--- license: apache-2.0 tags: - automatic-speech-recognition - arabic_speech_corpus - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-300m-ar results: [] --- # wav2vec2-xls-r-300m-ar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the ARABIC_SPEECH_CORPUS - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.3212 - Wer: 0.0636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0793 | 8.85 | 1000 | 0.1626 | 0.0786 | | 0.0396 | 17.7 | 2000 | 0.2199 | 0.0807 | | 0.0285 | 26.55 | 3000 | 0.2289 | 0.0694 | | 0.021 | 35.4 | 4000 | 0.2662 | 0.0722 | | 0.0177 | 44.25 | 5000 | 0.2459 | 0.0744 | | 0.0155 | 53.1 | 6000 | 0.2689 | 0.0679 | | 0.0149 | 61.95 | 7000 | 0.2760 | 0.0717 | | 0.0074 | 70.8 | 8000 | 0.3004 | 0.0680 | | 0.0058 | 79.65 | 9000 | 0.3113 | 0.0650 | | 0.0033 | 88.5 | 10000 | 0.3212 | 0.0636 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.11.1.dev0 - Tokenizers 0.13.2