File size: 41,056 Bytes
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f237e67
17643e1
 
f237e67
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f237e67
17643e1
 
f237e67
17643e1
 
 
 
 
 
 
 
 
 
 
 
f237e67
17643e1
 
 
 
 
 
 
 
f237e67
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
f237e67
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
f237e67
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f237e67
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f237e67
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f237e67
17643e1
 
e52e688
 
 
 
f237e67
 
e52e688
 
f237e67
e52e688
 
 
 
17643e1
 
810e3d8
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
 
f237e67
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
 
810e3d8
17643e1
 
 
 
810e3d8
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f237e67
17643e1
 
 
 
810e3d8
17643e1
810e3d8
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f237e67
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f237e67
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810e3d8
 
 
 
 
 
 
 
 
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f237e67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17643e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "63b957e0-d83b-48a6-8ae0-a276b983e181",
   "metadata": {},
   "source": [
    "### Optional: install the necessary packages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "5569a330-ea6b-4402-9fd5-e7a0ce981bc9",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: huggingface_hub in /workspace/.miniconda3/lib/python3.12/site-packages (0.26.2)\n",
      "Requirement already satisfied: filelock in /workspace/.miniconda3/lib/python3.12/site-packages (from huggingface_hub) (3.16.1)\n",
      "Requirement already satisfied: fsspec>=2023.5.0 in /workspace/.miniconda3/lib/python3.12/site-packages (from huggingface_hub) (2024.9.0)\n",
      "Requirement already satisfied: packaging>=20.9 in /workspace/.miniconda3/lib/python3.12/site-packages (from huggingface_hub) (24.1)\n",
      "Requirement already satisfied: pyyaml>=5.1 in /workspace/.miniconda3/lib/python3.12/site-packages (from huggingface_hub) (6.0.2)\n",
      "Requirement already satisfied: requests in /workspace/.miniconda3/lib/python3.12/site-packages (from huggingface_hub) (2.32.3)\n",
      "Requirement already satisfied: tqdm>=4.42.1 in /workspace/.miniconda3/lib/python3.12/site-packages (from huggingface_hub) (4.66.5)\n",
      "Requirement already satisfied: typing-extensions>=3.7.4.3 in /workspace/.miniconda3/lib/python3.12/site-packages (from huggingface_hub) (4.11.0)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /workspace/.miniconda3/lib/python3.12/site-packages (from requests->huggingface_hub) (3.3.2)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /workspace/.miniconda3/lib/python3.12/site-packages (from requests->huggingface_hub) (3.7)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /workspace/.miniconda3/lib/python3.12/site-packages (from requests->huggingface_hub) (2.2.3)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /workspace/.miniconda3/lib/python3.12/site-packages (from requests->huggingface_hub) (2024.8.30)\n",
      "Note: you may need to restart the kernel to use updated packages.\n",
      "Requirement already satisfied: datasets in /workspace/.miniconda3/lib/python3.12/site-packages (3.1.0)\n",
      "Requirement already satisfied: filelock in /workspace/.miniconda3/lib/python3.12/site-packages (from datasets) (3.16.1)\n",
      "Requirement already satisfied: numpy>=1.17 in /workspace/.miniconda3/lib/python3.12/site-packages (from datasets) (2.1.3)\n",
      "Requirement already satisfied: pyarrow>=15.0.0 in /workspace/.miniconda3/lib/python3.12/site-packages (from datasets) (18.0.0)\n",
      "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /workspace/.miniconda3/lib/python3.12/site-packages (from datasets) (0.3.8)\n",
      "Requirement already satisfied: pandas in /workspace/.miniconda3/lib/python3.12/site-packages (from datasets) (2.2.3)\n",
      "Requirement already satisfied: requests>=2.32.2 in /workspace/.miniconda3/lib/python3.12/site-packages (from datasets) (2.32.3)\n",
      "Requirement already satisfied: tqdm>=4.66.3 in /workspace/.miniconda3/lib/python3.12/site-packages (from datasets) (4.66.5)\n",
      "Requirement already satisfied: xxhash in /workspace/.miniconda3/lib/python3.12/site-packages (from datasets) (3.5.0)\n",
      "Requirement already satisfied: multiprocess<0.70.17 in /workspace/.miniconda3/lib/python3.12/site-packages (from datasets) (0.70.16)\n",
      "Requirement already satisfied: fsspec<=2024.9.0,>=2023.1.0 in /workspace/.miniconda3/lib/python3.12/site-packages (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets) (2024.9.0)\n",
      "Requirement already satisfied: aiohttp in /workspace/.miniconda3/lib/python3.12/site-packages (from datasets) (3.11.2)\n",
      "Requirement already satisfied: huggingface-hub>=0.23.0 in /workspace/.miniconda3/lib/python3.12/site-packages (from datasets) (0.26.2)\n",
      "Requirement already satisfied: packaging in /workspace/.miniconda3/lib/python3.12/site-packages (from datasets) (24.1)\n",
      "Requirement already satisfied: pyyaml>=5.1 in /workspace/.miniconda3/lib/python3.12/site-packages (from datasets) (6.0.2)\n",
      "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /workspace/.miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (2.4.3)\n",
      "Requirement already satisfied: aiosignal>=1.1.2 in /workspace/.miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (1.3.1)\n",
      "Requirement already satisfied: attrs>=17.3.0 in /workspace/.miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (24.2.0)\n",
      "Requirement already satisfied: frozenlist>=1.1.1 in /workspace/.miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (1.5.0)\n",
      "Requirement already satisfied: multidict<7.0,>=4.5 in /workspace/.miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (6.1.0)\n",
      "Requirement already satisfied: propcache>=0.2.0 in /workspace/.miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (0.2.0)\n",
      "Requirement already satisfied: yarl<2.0,>=1.17.0 in /workspace/.miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (1.17.1)\n",
      "Requirement already satisfied: typing-extensions>=3.7.4.3 in /workspace/.miniconda3/lib/python3.12/site-packages (from huggingface-hub>=0.23.0->datasets) (4.11.0)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /workspace/.miniconda3/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (3.3.2)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /workspace/.miniconda3/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (3.7)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /workspace/.miniconda3/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (2.2.3)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /workspace/.miniconda3/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (2024.8.30)\n",
      "Requirement already satisfied: python-dateutil>=2.8.2 in /workspace/.miniconda3/lib/python3.12/site-packages (from pandas->datasets) (2.9.0.post0)\n",
      "Requirement already satisfied: pytz>=2020.1 in /workspace/.miniconda3/lib/python3.12/site-packages (from pandas->datasets) (2024.1)\n",
      "Requirement already satisfied: tzdata>=2022.7 in /workspace/.miniconda3/lib/python3.12/site-packages (from pandas->datasets) (2024.2)\n",
      "Requirement already satisfied: six>=1.5 in /workspace/.miniconda3/lib/python3.12/site-packages (from python-dateutil>=2.8.2->pandas->datasets) (1.16.0)\n",
      "Note: you may need to restart the kernel to use updated packages.\n",
      "Requirement already satisfied: bitsandbytes in /workspace/.miniconda3/lib/python3.12/site-packages (0.44.2.dev0)\n",
      "Requirement already satisfied: torch in /workspace/.miniconda3/lib/python3.12/site-packages (from bitsandbytes) (2.5.1)\n",
      "Requirement already satisfied: numpy in /workspace/.miniconda3/lib/python3.12/site-packages (from bitsandbytes) (2.1.3)\n",
      "Requirement already satisfied: filelock in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (3.16.1)\n",
      "Requirement already satisfied: typing-extensions>=4.8.0 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (4.11.0)\n",
      "Requirement already satisfied: networkx in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (3.4.2)\n",
      "Requirement already satisfied: jinja2 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (3.1.4)\n",
      "Requirement already satisfied: fsspec in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (2024.9.0)\n",
      "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.4.127 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (12.4.127)\n",
      "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.4.127 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (12.4.127)\n",
      "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.4.127 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (12.4.127)\n",
      "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (9.1.0.70)\n",
      "Requirement already satisfied: nvidia-cublas-cu12==12.4.5.8 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (12.4.5.8)\n",
      "Requirement already satisfied: nvidia-cufft-cu12==11.2.1.3 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (11.2.1.3)\n",
      "Requirement already satisfied: nvidia-curand-cu12==10.3.5.147 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (10.3.5.147)\n",
      "Requirement already satisfied: nvidia-cusolver-cu12==11.6.1.9 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (11.6.1.9)\n",
      "Requirement already satisfied: nvidia-cusparse-cu12==12.3.1.170 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (12.3.1.170)\n",
      "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (2.21.5)\n",
      "Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (12.4.127)\n",
      "Requirement already satisfied: nvidia-nvjitlink-cu12==12.4.127 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (12.4.127)\n",
      "Requirement already satisfied: triton==3.1.0 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (3.1.0)\n",
      "Requirement already satisfied: setuptools in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (75.1.0)\n",
      "Requirement already satisfied: sympy==1.13.1 in /workspace/.miniconda3/lib/python3.12/site-packages (from torch->bitsandbytes) (1.13.1)\n",
      "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /workspace/.miniconda3/lib/python3.12/site-packages (from sympy==1.13.1->torch->bitsandbytes) (1.3.0)\n",
      "Requirement already satisfied: MarkupSafe>=2.0 in /workspace/.miniconda3/lib/python3.12/site-packages (from jinja2->torch->bitsandbytes) (2.1.3)\n",
      "Note: you may need to restart the kernel to use updated packages.\n",
      "Note: you may need to restart the kernel to use updated packages.\n",
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "!git config --global credential.helper store\n",
    "%pip install huggingface_hub\n",
    "%pip install -U datasets\n",
    "%pip install -U bitsandbytes\n",
    "%pip install -q git+https://github.com/huggingface/transformers.git\n",
    "%pip install -q accelerate datasets peft torchvision torchaudio"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ca7f5161-0104-45c4-83c9-1dd0dad15e29",
   "metadata": {},
   "source": [
    "## Login on Hugging Face"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "14c445aa-c8bc-43b9-8d18-46d79055e1f0",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Hugging Face token found in environment variable\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Note: Environment variable`HF_TOKEN` is set and is the current active token independently from the token you've just configured.\n"
     ]
    }
   ],
   "source": [
    "from huggingface_hub import login\n",
    "import os\n",
    "\n",
    "HF_TOKEN = \"hf_C…………\"\n",
    "\n",
    "if os.environ.get('HF_TOKEN') is not None:\n",
    "  HF_TOKEN = os.environ.get('HF_TOKEN')\n",
    "  print(f\"Hugging Face token found in environment variable\")\n",
    "try:\n",
    "  import google.colab\n",
    "  from google.colab import userdata\n",
    "  if (userdata.get('HF_TOKEN') is not None) and (HF_TOKEN == \"\"):\n",
    "    HF_TOKEN = userdata.get('HF_TOKEN')\n",
    "  else:\n",
    "    raise ValueError(\"Please set your Hugging Face token in the user data panel, or pass it as an environment variable\")\n",
    "except ModuleNotFoundError:\n",
    "  if HF_TOKEN is None:\n",
    "    raise ValueError(\"Please set your Hugging Face token in the user data panel, or pass it as an environment variable\")\n",
    "\n",
    "login(\n",
    "  token=HF_TOKEN,\n",
    "  add_to_git_credential=True\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c33a0325-f056-43c4-a500-6ad1b5632ee5",
   "metadata": {},
   "source": [
    "### Set the environment variables"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "bfd9dbb4-59c4-4d97-9727-5c2d9e60724e",
   "metadata": {},
   "outputs": [],
   "source": [
    "#source_model_id = \"HuggingFaceM4/Idefics3-8B-Llama3\"\n",
    "source_model_id = \"meta-llama/Llama-3.2-11B-Vision-Instruct\"\n",
    "detination_model_id = \"eltorio/IDEFICS3_medical_instruct\"\n",
    "dataset_id = \"ruslanmv/ai-medical-dataset\"\n",
    "prompt= \"You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor\"\n",
    "output_dir = \"IDEFICS3_medical_instruct\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "da89fd1d-44dd-4d4e-803f-ebf58b23165f",
   "metadata": {},
   "source": [
    "### Optionally clone the model repository"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "f6510468-c903-4bd2-80fd-2511b7fb2f72",
   "metadata": {},
   "outputs": [],
   "source": [
    "# clone Hugging Face model repository\n",
    "# !git clone https://huggingface.co/$destination_model_id $output_dir"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2bfc04cd-3867-445f-9764-21bc72a07f60",
   "metadata": {},
   "source": [
    "### Load the dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "1efffd3f-aece-4858-b615-8fb1f2997068",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b39d97f2fb434903b0521f5dea2fd37c",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Resolving data files:   0%|          | 0/18 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "da3388e8f61e4aee98971ce520785c0c",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Resolving data files:   0%|          | 0/18 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "db11101162ff455baed085d8c25a2c77",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading dataset shards:   0%|          | 0/18 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from datasets import load_dataset\n",
    "\n",
    "base_dataset = load_dataset(\"ruslanmv/ai-medical-dataset\")\n",
    "# define the train dataset as a random 80% of the data\n",
    "train_dataset = base_dataset[\"train\"].train_test_split(test_size=0.2)[\"train\"]\n",
    "# define the eval dataset as the remaining 20%\n",
    "eval_dataset = base_dataset[\"train\"].train_test_split(test_size=0.2)[\"test\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6be720c0-90a3-4ec0-bf1c-4d18e6b2bb31",
   "metadata": {
    "id": "Tu199rI3AMtG"
   },
   "source": [
    "### Configure LoRA adapters"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "86163110-f084-429e-bc70-5b281a679d1c",
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 67,
     "referenced_widgets": [
      "9f270a1faba44c1194d683a431d43f6f",
      "7403ea0ef7f04e2389c351b0e10a68ce",
      "fbc17ebe22854738b98bf2488c6105b1",
      "22e04cb812df4f5ca621b041c213d17e",
      "96d4f59ed68749eaaf9ad0c6a4e94f13",
      "7a8bc62ce92a4571ad42ac2beef851ef",
      "ae0117f952d94e469793bd8db3ad9a19",
      "0b8f8a93515d49488642b008e47b4bf3",
      "c9691e94467b4badbb71116136350c93",
      "fcd773b4e6154af78e7d476c59294e25",
      "7bd9e3fc12e64bc7bb95891dcd4153c7"
     ]
    },
    "executionInfo": {
     "elapsed": 106706,
     "status": "ok",
     "timestamp": 1730998316179,
     "user": {
      "displayName": "Ronan Le Meillat",
      "userId": "09161391957806824350"
     },
     "user_tz": -60
    },
    "id": "GTf6VxwwAMtG",
    "outputId": "86a93163-6b30-4e8b-ca1c-7392922a4aa6"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "`low_cpu_mem_usage` was None, now default to True since model is quantized.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "591a95a8c90143a39a5616131c605ed3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/5 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import torch\n",
    "from peft import LoraConfig, get_peft_model\n",
    "from transformers import AutoProcessor, MllamaForConditionalGeneration, BitsAndBytesConfig, Idefics3ForConditionalGeneration\n",
    "\n",
    "DEVICE = \"cuda:0\"\n",
    "USE_LORA = False\n",
    "USE_QLORA = True\n",
    "\n",
    "processor = AutoProcessor.from_pretrained(\n",
    "    source_model_id,\n",
    "    do_image_splitting=False\n",
    ")\n",
    "\n",
    "if USE_QLORA or USE_LORA:\n",
    "    lora_config = LoraConfig(\n",
    "        r=8,\n",
    "        lora_alpha=8,\n",
    "        lora_dropout=0.1,\n",
    "        target_modules=[\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n",
    "                      \"gate_proj\", \"up_proj\", \"down_proj\",],\n",
    "        #target_modules='.*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$',\n",
    "        task_type=\"CAUSAL_LM\",\n",
    "        use_dora=False if USE_QLORA else True,\n",
    "        init_lora_weights=\"gaussian\"\n",
    "    )\n",
    "    if USE_QLORA:\n",
    "        bnb_config = BitsAndBytesConfig(\n",
    "            load_in_4bit=True,\n",
    "            bnb_4bit_quant_type=\"nf4\",\n",
    "            bnb_4bit_compute_dtype=torch.float16\n",
    "        )\n",
    "    model = MllamaForConditionalGeneration.from_pretrained(\n",
    "        source_model_id,\n",
    "        torch_dtype=torch.float16,\n",
    "        quantization_config=bnb_config if USE_QLORA else None,\n",
    "    )\n",
    "    model = get_peft_model(model, lora_config)\n",
    "    #model.add_adapter(lora_config)\n",
    "    #model.enable_adapters()\n",
    "else:\n",
    "    model = MllamaForConditionalGeneration.from_pretrained(\n",
    "        source_model_id,\n",
    "        torch_dtype=torch.float16,\n",
    "        _attn_implementation=\"flash_attention_2\", # This works for A100 or H100\n",
    "    ).to(DEVICE)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "f2c2fd34-e1e4-427d-86d0-73bf74ff0005",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'question': 'What was the goal of the study?',\n",
       " 'context': 'The aim of this study was to evaluate the success of steroid (PRED) withdrawal due to replacement by mycophenolate mofetil (MMF) in orthotopic liver transplant (OLT) recipients with autoimmune hepatitis (AIH). Thirty patients with AIH > 12 months after OLT randomized to receive either PRED and tacrolimus (TAC) or MMF and TAC were followed for 24 months. Withdrawal of steroids showed no difference regarding graft and patient survival. Also we demonstrated significantly lower glucose levels with lower HbA1c and a reduced need for insulin as well as a significantly lower serum cholesterol in the MMF group. Patients without steroids showed a lower incidence of osteopenia. Maintenance therapy in OLT patients with AIH may be performed safely using MMF instead of prednisone.'}"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "eval_dataset\n",
    "eval_dataset[24]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "01b0fe64-1f62-42a8-847d-9162f5015c4e",
   "metadata": {
    "id": "0JeaGZxHAMtG"
   },
   "source": [
    "### Create Data Collator for IDEFICS3 format."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "id": "29d96aea-445d-482d-b7dc-861635a5389c",
   "metadata": {
    "executionInfo": {
     "elapsed": 426,
     "status": "ok",
     "timestamp": 1730998596513,
     "user": {
      "displayName": "Ronan Le Meillat",
      "userId": "09161391957806824350"
     },
     "user_tz": -60
    },
    "id": "X6TWyPHaAMtH"
   },
   "outputs": [],
   "source": [
    "class MyDataCollator:\n",
    "    def __init__(self, processor):\n",
    "        self.processor = processor\n",
    "        self.image_token_id = 128256\n",
    "\n",
    "    def __call__(self, samples):\n",
    "        texts = []\n",
    "        images = []\n",
    "        for sample in samples:\n",
    "            question = sample[\"question\"]\n",
    "            answer = sample[\"context\"]\n",
    "            messages = [\n",
    "                {\n",
    "                    \"role\": \"system\",\n",
    "                    \"content\": [\n",
    "                        {\"type\": \"text\", \"text\": prompt}\n",
    "                    ]\n",
    "\n",
    "                },\n",
    "                {\n",
    "                    \"role\": \"user\",\n",
    "                    \"content\": [\n",
    "                        {\"type\": \"text\", \"text\": question },\n",
    "                    ]\n",
    "                },\n",
    "                {\n",
    "                    \"role\": \"assistant\",\n",
    "                    \"content\": [\n",
    "                        {\"type\": \"text\", \"text\": answer}\n",
    "                    ]\n",
    "                }\n",
    "            ]\n",
    "            text = processor.apply_chat_template(messages, add_generation_prompt=False)\n",
    "            print(text)\n",
    "            texts.append(text.strip())\n",
    "\n",
    "        batch = processor(text=texts, return_tensors=\"pt\", padding=True)\n",
    "\n",
    "        labels = batch[\"input_ids\"].clone()\n",
    "        #labels[labels == processor.tokenizer.pad_token_id] = self.image_token_id\n",
    "        batch[\"labels\"] = labels\n",
    "\n",
    "        return batch\n",
    "\n",
    "data_collator = MyDataCollator(processor)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a8f2e613-5695-4558-9a13-66158d82bed9",
   "metadata": {
    "id": "vsq4TtIJAMtH"
   },
   "source": [
    "### Setup training parameters"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "id": "f3cda658-05f6-4078-8d71-2d1c0352ecfa",
   "metadata": {
    "executionInfo": {
     "elapsed": 1008,
     "status": "ok",
     "timestamp": 1730998601172,
     "user": {
      "displayName": "Ronan Le Meillat",
      "userId": "09161391957806824350"
     },
     "user_tz": -60
    },
    "id": "Q_WKQFfoAMtH"
   },
   "outputs": [],
   "source": [
    "from transformers import TrainingArguments, Trainer\n",
    "\n",
    "training_args = TrainingArguments(\n",
    "    output_dir = output_dir,\n",
    "    overwrite_output_dir = False,\n",
    "    auto_find_batch_size = True,\n",
    "    learning_rate = 2e-4,\n",
    "    fp16 = True,\n",
    "    per_device_train_batch_size = 2,\n",
    "    per_device_eval_batch_size = 2,\n",
    "    gradient_accumulation_steps = 8,\n",
    "    dataloader_pin_memory = False,\n",
    "    save_total_limit = 3,\n",
    "    eval_strategy = \"steps\",\n",
    "    save_strategy = \"steps\",\n",
    "    eval_steps = 100,\n",
    "    save_steps = 10, # checkpoint each 10 steps\n",
    "    resume_from_checkpoint = True,\n",
    "    logging_steps = 5,\n",
    "    remove_unused_columns = False,\n",
    "    push_to_hub = True,\n",
    "    label_names = [\"labels\"],\n",
    "    load_best_model_at_end = False,\n",
    "    report_to = \"none\",\n",
    "    optim = \"paged_adamw_8bit\",\n",
    "    max_steps = 10, # remove this for training\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "id": "e6569265-5941-4482-84e2-faf1b61b685c",
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "executionInfo": {
     "elapsed": 426,
     "status": "ok",
     "timestamp": 1730998605441,
     "user": {
      "displayName": "Ronan Le Meillat",
      "userId": "09161391957806824350"
     },
     "user_tz": -60
    },
    "id": "vSIo17mgAMtH",
    "outputId": "3bebd35a-ed7f-49ee-e1bc-91594e8dcd24"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "max_steps is given, it will override any value given in num_train_epochs\n"
     ]
    }
   ],
   "source": [
    "trainer = Trainer(\n",
    "    model = model,\n",
    "    args = training_args,\n",
    "    data_collator = data_collator,\n",
    "    train_dataset = train_dataset,\n",
    "    eval_dataset = eval_dataset,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "916ac153-206b-488a-b783-3ad0c4ba21b6",
   "metadata": {
    "id": "pmlwDsOpAMtI"
   },
   "source": [
    "### Start (or restart) Training"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fb72a570-97e8-440e-b79f-640d8898e37c",
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 1000
    },
    "id": "WQA84KnTAMtI",
    "outputId": "ebb15160-f56e-4899-e608-b0d5fd0ba117"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "What is the cross sensitivity with acetaminophen in aspirin-<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "Cross sensitivity with acetaminophen in aspirin-sensitive subjects with asthma.<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "What is the study of blood pressure control rate in Chinese hypertensive outpatients?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "[National survey of blood pressure control rate in Chinese hypertensive outpatients-China STATUS].<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "What is the pH of the late secretory pathway?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "An autocatalytic cleavage in the C terminus of the human MUC2 mucin occurs at the low pH of the late secretory pathway.<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "What is the name of the uncontrolled diabetes mellitus mellitus mell<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "- Uncontrolled diabetes mellitus mellitus (as indicated by metabolic derangements and/or severe diabetes mellitus related uncontrolled organ complications)<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "What is the name of the two unrelated yeast strains?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "The genome variability and meiotic gene expression patterns in two unrelated laboratory yeast strains, SK1 and W303, have been characterized using high-density oligonucleotide arrays. The statistical analysis and comparison of the data has allowed identification of: (1) genes with functional importance to meiosis and sporulation in yeast and (2) genes expressed in a strain-specific manner. The genome-wide data also reveal potential reasons why these strains display significant differences in the ability to make fertile spores. Molecularly tagged yeast deletion strains have been used to determine the contribution of each gene to the execution of the sporulation/germination pathway. The application of genetics and the new genomic technologies have allowed a quantum jump in our understanding of yeast molecular biology.<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "What is the name of the endproducts that are used in patients with systemic l<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "Accumulation of advanced glycation endproducts in patients with systemic lupus erythematosus.<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "What is the potential for developing small molecules antagonists?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "The development of specific targeted therapies, such as anti-TNF-alpha treatment, for chronic inflammatory disorders such as rheumatoid arthritis, has significantly improved treatment, although not all patients respond. Targeting cellular adhesion molecules and chemokines/chemokine receptors as regulators of the extravasation and migration of leukocytes may provide a novel approach for the treatment of these diseases. Moreover, the possibility of developing small-molecule antagonists offers an excellent method for the oral delivery of compounds with a short half-life.<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "What is the name of the type of cancer that is undergoing upper endoscopy?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "- People who are undergoing upper endoscopy as part of their medical care with a history of esophageal cancer, Barrett's esophagus, or upper gastrointestinal symptoms.<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "What is the purpose of the investigators' research?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "The investigators propose to find out how much Latino men know about the benefits and risks of prostate cancer screening and what factors influence how they decide whether or not to have screening. The investigators are also interested in learning how providing education information, both verbally and in print, about the risks and benefits of prostate cancer screening affects men's interest and knowledge.<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "What is the effectiveness of scalp cooling in preventing alopecia?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "The effectiveness of scalp cooling in preventing alopecia for patients receiving epirubicin and docetaxel.<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "What is the PET/CT PET/CT PET/CT PET/CT PET/CT PET<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "68GA-BMV101 PET/CT IN PATIENTS WITH IDIOPATHIC PULMONARY FIBROSIS:<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "How many patients were enrolled in the MXF group?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "OBJECTIVE: To investigate whether adding moxifloxacin (MXF) to the standard anti-tuberculosis regimen can shorten the time to sputum culture conversion in pulmonary tuberculosis (PTB). METHODS: Adults with culture-positive PTB were divided into two treatment groups by their choice: standard regimen alone (HERZ group) and standard regimen plus daily 400 mg MXF in the first 2 months (MXF group). Sputum samples were collected thrice weekly in the first 8 weeks. The propensity score was calculated to estimate the conditional probability of entering the MXF group. Factors influencing time to culture conversion were investigated using Cox proportional hazards regression analysis stratified by propensity score. RESULTS: Sixty-two patients were enrolled in the MXF group and 88 in the HERZ group; respectively 51 and 72 completed the study. The regimen was modified before culture conversion in respectively 6 (12%) and 12 (16%; P = 0.47) patients, due to adverse effects. The time to culture conversion was shorter in the MXF group (HR 2.1, 95%CI 1.4-3.2). The culture conversion rate after 6 weeks of treatment was respectively 82% and 61% (P = 0.011, <0.05/4, calculated using the modified Bonferroni method). CONCLUSIONS: Adding MXF to the standard anti-tuberculosis regimen in the first 2 months was associated with a shorter time to culture conversion, a higher 6-week culture conversion rate and reduced transmission of tuberculosis.<|eot_id|>\n",
      "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
      "\n",
      "Cutting Knowledge Date: December 2023\n",
      "Today Date: 16 Nov 2024\n",
      "\n",
      "[{'type': 'text', 'text': 'You are a medical doctor with 15 year of experience verifying the knowledge of a new diploma medical doctor'}]<|eot_id|><|start_header_id|>user<|end_header_id|>\n",
      "\n",
      "Pyrimethamine.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n",
      "\n",
      "- Pyrimethamine.<|eot_id|>\n"
     ]
    }
   ],
   "source": [
    "trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b109f2b9-f3cb-4732-8318-b74ed9e5aa25",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}