Add gradient checkpointing
Browse files- modeling_mpt.py +32 -1
modeling_mpt.py
CHANGED
@@ -30,11 +30,18 @@ class MPTPreTrainedModel(PreTrainedModel):
|
|
30 |
base_model_prefix = 'model'
|
31 |
_no_split_modules = ['MPTBlock']
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
class MPTModel(MPTPreTrainedModel):
|
34 |
|
35 |
def __init__(self, config: MPTConfig):
|
36 |
config._validate_config()
|
37 |
super().__init__(config)
|
|
|
38 |
self.attn_impl = config.attn_config['attn_impl']
|
39 |
self.prefix_lm = config.attn_config['prefix_lm']
|
40 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
@@ -161,6 +168,10 @@ class MPTModel(MPTPreTrainedModel):
|
|
161 |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
162 |
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
163 |
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
|
|
|
|
|
|
|
|
164 |
S = input_ids.size(1)
|
165 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
166 |
tok_emb = self.wte(input_ids)
|
@@ -197,7 +208,27 @@ class MPTModel(MPTPreTrainedModel):
|
|
197 |
assert all_hidden_states is not None
|
198 |
all_hidden_states = all_hidden_states + (x,)
|
199 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
if past_key_values is not None:
|
202 |
past_key_values[b_idx] = past_key_value
|
203 |
if output_attentions:
|
|
|
30 |
base_model_prefix = 'model'
|
31 |
_no_split_modules = ['MPTBlock']
|
32 |
|
33 |
+
supports_gradient_checkpointing = True
|
34 |
+
|
35 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
36 |
+
if isinstance(module, MPTModel):
|
37 |
+
module.gradient_checkpointing = value
|
38 |
+
|
39 |
class MPTModel(MPTPreTrainedModel):
|
40 |
|
41 |
def __init__(self, config: MPTConfig):
|
42 |
config._validate_config()
|
43 |
super().__init__(config)
|
44 |
+
self.gradient_checkpointing = False
|
45 |
self.attn_impl = config.attn_config['attn_impl']
|
46 |
self.prefix_lm = config.attn_config['prefix_lm']
|
47 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
|
|
168 |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
169 |
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
170 |
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
171 |
+
if self.gradient_checkpointing and self.training:
|
172 |
+
if use_cache:
|
173 |
+
use_cache = False
|
174 |
+
|
175 |
S = input_ids.size(1)
|
176 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
177 |
tok_emb = self.wte(input_ids)
|
|
|
208 |
assert all_hidden_states is not None
|
209 |
all_hidden_states = all_hidden_states + (x,)
|
210 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
211 |
+
if self.gradient_checkpointing and self.training:
|
212 |
+
|
213 |
+
def create_custom_forward(module):
|
214 |
+
def custom_forward(*inputs):
|
215 |
+
# None for past_key_value
|
216 |
+
return module(*inputs)
|
217 |
+
|
218 |
+
return custom_forward
|
219 |
+
|
220 |
+
(x, attn_weights, past_key_value) = torch.utils.checkpoint.checkpoint(
|
221 |
+
create_custom_forward(block),
|
222 |
+
x,
|
223 |
+
past_key_value,
|
224 |
+
attn_bias,
|
225 |
+
attention_mask,
|
226 |
+
self.is_causal,
|
227 |
+
)
|
228 |
+
else:
|
229 |
+
(x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias,
|
230 |
+
attention_mask=attention_mask, is_causal=self.is_causal)
|
231 |
+
|
232 |
if past_key_values is not None:
|
233 |
past_key_values[b_idx] = past_key_value
|
234 |
if output_attentions:
|