--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-gecko results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.988479262672811 --- # vit-base-patch16-224-in21k-finetuned-gecko This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1890 - Accuracy: 0.9885 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.97 | 21 | 3.2699 | 0.6210 | | No log | 1.98 | 43 | 2.0011 | 0.8468 | | 3.1155 | 2.99 | 65 | 1.2851 | 0.8641 | | 3.1155 | 4.0 | 87 | 0.7751 | 0.9389 | | 1.1003 | 4.97 | 108 | 0.6060 | 0.9274 | | 1.1003 | 5.98 | 130 | 0.4584 | 0.9378 | | 0.5229 | 6.99 | 152 | 0.3417 | 0.9585 | | 0.5229 | 8.0 | 174 | 0.2415 | 0.9816 | | 0.5229 | 8.97 | 195 | 0.2014 | 0.9873 | | 0.3249 | 9.66 | 210 | 0.1890 | 0.9885 | ### Framework versions - Transformers 4.34.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.6 - Tokenizers 0.14.1