--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-gecko results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9389400921658986 --- # vit-base-patch16-224-in21k-finetuned-gecko This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0131 - Accuracy: 0.9389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.4758 | 0.97 | 21 | 3.0533 | 0.5657 | | 2.4494 | 1.98 | 43 | 2.0082 | 0.8191 | | 1.6937 | 2.99 | 65 | 1.4268 | 0.8802 | | 1.3144 | 4.0 | 87 | 1.1382 | 0.9182 | | 1.1068 | 4.83 | 105 | 1.0131 | 0.9389 | ### Framework versions - Transformers 4.34.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.6 - Tokenizers 0.14.1