File size: 2,194 Bytes
af577c6 c151b61 af577c6 7f6c586 af577c6 2bbc195 7f6c586 af577c6 7f6c586 af577c6 7f6c586 af577c6 2bbc195 c151b61 7f6c586 af577c6 4e3c18c af577c6 1303559 af577c6 7f6c586 af577c6 7f6c586 af577c6 4e3c18c c151b61 4e3c18c af577c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
language:
- el
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Medium El Greco
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: el
split: test
args: el
metrics:
- name: Wer
type: wer
value: 10.74479940564636
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium El Greco
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4245
- Wer: 10.7448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 7000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0039 | 2.49 | 1000 | 0.3787 | 12.4443 |
| 0.0017 | 4.98 | 2000 | 0.4010 | 12.2864 |
| 0.0006 | 7.46 | 3000 | 0.4108 | 11.6921 |
| 0.0004 | 9.95 | 4000 | 0.4221 | 11.5806 |
| 0.0005 | 12.44 | 5000 | 0.4222 | 11.4134 |
| 0.0006 | 4.03 | 6000 | 0.4230 | 10.9212 |
| 0.0006 | 9.03 | 7000 | 0.4245 | 10.7448 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|