File size: 13,725 Bytes
49740e6
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78ebfe4d85e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78ebfe4d8670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78ebfe4d8700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78ebfe4d8790>", "_build": "<function ActorCriticPolicy._build at 0x78ebfe4d8820>", "forward": "<function ActorCriticPolicy.forward at 0x78ebfe4d88b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78ebfe4d8940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78ebfe4d89d0>", "_predict": "<function ActorCriticPolicy._predict at 0x78ebfe4d8a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78ebfe4d8af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78ebfe4d8b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78ebfe4d8c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78ebfe66d9c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717609057070262968, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1kDDxxclW7ArUIvNB3ozxJ2X+8tJGLPQAAgD8AAIA/ZuZCu3HgU7v2Mna9DD0Avbd4kDzGwd09AACAPwAAgD9tDA4+KGmcPTkItr7/vsm9EGcjvUaMJr0AAAAAAAAAAGa/KD13YEQ/LRLrPczN/76Pf+o9t98BPgAAAAAAAAAAsN9UvuvoUz9+bHq+0+IFv2hLn77DGsI8AAAAAAAAAADNN4y9rnuGuq4wFDRDMEIt5ucluxppqrMAAIA/AACAP82MWTwpRGC6MiDVOZtoCDUVpTI7PTf5uAAAgD8AAIA/Gj8WPvmWBT4AWpu+yhLpvaiRFr3sSa29AAAAAAAAAABNG+C99JUcP8uQAr25J9u+Nj6VvQaC8z0AAAAAAAAAAFr84D2fwNs8Zg1ovpouzr39uhu9Y68yPQAAAAAAAAAAM9FrPPbkdbr/A7c9JSqaNULlyLql05A0AACAPwAAgD+aqdc8lyt3Pjb+Kj2dFoO+mBwnPDsa9zwAAAAAAAAAADNrfrxp9Ga8O1RqPSrqDryRScS9EDnovAAAgD8AAIA/pq1svhFmKz+uDUG9d/wOv7eBzb5qt4s9AAAAAAAAAACam3u8C7jqPlWCNz0OAsK+G/f1u0hPcz0AAAAAAAAAADMzKT3hiKG6hjdFMybujCsKWyW6IYm8swAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4uCV0Lc9KMAWyUTQEBjAF0lEdAlFkHTqjaf3V9lChoBkdAb/euIyj59GgHS+NoCEdAlFke/tY0VXV9lChoBkdAcDVIMjNY82gHTQgBaAhHQJRZZ6Vt4zJ1fZQoaAZHQHBZsnJDE3toB00kAWgIR0CUWZgCfYjCdX2UKGgGR0Bwc+Z1FH8TaAdNBQFoCEdAlFoNke6qbXV9lChoBkdAbNnqD9OymmgHTQIBaAhHQJRbU6Lfk3l1fZQoaAZHQGxKIdU83ddoB0v4aAhHQJRcEcuJ1q51fZQoaAZHQG+WNeUpuuRoB002AWgIR0CUXBl7+kxidX2UKGgGR0BvWIISlFc6aAdNDgFoCEdAlFy6TfR/mXV9lChoBkdAcOrpGFzuGGgHS/doCEdAlFzeGKyfMHV9lChoBkdAcQUhsqJ/G2gHS+FoCEdAlF3v/zasZHV9lChoBkdAcr6y3Td+HGgHTUEBaAhHQJReEaAFxGV1fZQoaAZHQHCS7j1f3N9oB00FAWgIR0CUXtn3L3bmdX2UKGgGR0Bx6A7jkuHvaAdL+GgIR0CUXx6sQumKdX2UKGgGR0BwdhaIN3GGaAdNAwFoCEdAlF9PwRXfZXV9lChoBkdAcb9M2WIGhWgHS9xoCEdAlF+0CzTnaHV9lChoBkdAcS9YOUdJa2gHS+ZoCEdAlGCjW07bL3V9lChoBkdAcDQjebd8A2gHTQMBaAhHQJRg7Gn4wh51fZQoaAZHQG06MbvPTodoB00GAWgIR0CUYQTisGPgdX2UKGgGR0ByI3QfIS13aAdNAQFoCEdAlGFFQMx46nV9lChoBkdAc9w+vQnhKmgHS+9oCEdAlGGAte2NN3V9lChoBkdAbax+ERJ2+2gHS/ZoCEdAlGM1XNke63V9lChoBkdAKU3B55Z8r2gHS9FoCEdAlGPcY/FBIHV9lChoBkdAbljX5nDiwWgHS/JoCEdAlGP9b5dnkHV9lChoBkdAcCjiR4hUzmgHTQQBaAhHQJRksyHmA9V1fZQoaAZHQHCP0fkmx+toB0v3aAhHQJRm14Pf8/F1fZQoaAZHQHIgxY/3WWhoB00iAWgIR0CUZuOKfnOjdX2UKGgGR0BwwpM9KVY7aAdL92gIR0CUZvnanJkodX2UKGgGR0BwKIhOgxrSaAdL72gIR0CUaG6ZH/cWdX2UKGgGR0Bwbs8ZDRdAaAdNEgFoCEdAlGjMbBGhEnV9lChoBkdAb9mohpxm02gHS+NoCEdAlGmKRdQfp3V9lChoBkdAchn0Bfa6BmgHTRgBaAhHQJRponeBQN11fZQoaAZHQHAu2ZNO/L1oB00hAWgIR0CUacTfR/mUdX2UKGgGR0Bx+3ZoPCl8aAdL9WgIR0CUaduRcNYsdX2UKGgGR0Bw1kotthuwaAdL82gIR0CUam3IdU83dX2UKGgGR0BtGcPlMh5gaAdNBgFoCEdAlGqWpIczZnV9lChoBkdAccQJGOMl1WgHS+1oCEdAlGxANTcZcnV9lChoBkdAcH2d6cAimmgHS+5oCEdAlGzmkFfReHV9lChoBkdAcO9Wvr4WUWgHTQMBaAhHQJRs+QZGax51fZQoaAZHQHL7jr3TNMZoB01EAWgIR0CUf/1MdtEYdX2UKGgGR0BydqDJ2dNGaAdL8WgIR0CUgE1UEPlNdX2UKGgGR0BxYyOOsDGMaAdNCgFoCEdAlIGXPu5SWXV9lChoBkdAcyKT1kDp1WgHTSEBaAhHQJSCdOk+HJt1fZQoaAZHQG1jQhwEQoVoB0vyaAhHQJSCgedTYNB1fZQoaAZHQHDKqMJhOQBoB0vhaAhHQJSCiDHwPRR1fZQoaAZHQHEwddqtYCBoB00KAWgIR0CUgwonKGL2dX2UKGgGR0BwfjwYtQKsaAdL7mgIR0CUg9tdzGPxdX2UKGgGR0Bvr+DYh+vyaAdNHAFoCEdAlITGweNkv3V9lChoBkdAckEVi4J/omgHTQIBaAhHQJSE0APuogp1fZQoaAZHQHMBHokiUxFoB0vUaAhHQJSFcefZmI11fZQoaAZHQHB36jFhodxoB01PAWgIR0CUhpV58jRldX2UKGgGR0BuTRrN4Z/DaAdL8mgIR0CUh6qFAVwhdX2UKGgGR0BwsXjxTbWVaAdL9WgIR0CUh7fw7T2GdX2UKGgGR0BxaX9ZRsMzaAdNDQFoCEdAlIq0knkT6HV9lChoBkdAcNJynUDuB2gHS+RoCEdAlIt3++/QB3V9lChoBkdAcQ7lXzUZvWgHTRoBaAhHQJSLtPva11J1fZQoaAZHQHH5hWo3rD9oB0vwaAhHQJSMIP4EfT11fZQoaAZHQHDLGeUY8+1oB0v1aAhHQJSM+DEm6Xl1fZQoaAZHQHHPTlDF6zFoB00gAWgIR0CUjSmmLtNSdX2UKGgGR0Bx3yTkhib2aAdNDwFoCEdAlI1OyE+PinV9lChoBkdAcMbwevIOpmgHS+9oCEdAlI18h5gPVnV9lChoBkdAcX99ETg2qGgHS+BoCEdAlI3HueBg/nV9lChoBkdAcNiFajesP2gHS+5oCEdAlI4nvMKTjnV9lChoBkdAbolvjOs1bmgHS+RoCEdAlI8kth/iHnV9lChoBkdAcUQ0cfeUIWgHTRcBaAhHQJSPvpB5X2d1fZQoaAZHQG/rsV+I/JNoB0vxaAhHQJSQQHHFPzp1fZQoaAZHQHL5sBdUsFtoB01pAmgIR0CUkMiBGx2TdX2UKGgGR0ByJw5T6zmfaAdNFQFoCEdAlJE3w5NoJ3V9lChoBkdAcURNu+AVf2gHS+loCEdAlJH2M85jpnV9lChoBkdAcWVub7TDwmgHS9xoCEdAlJKAIIF/x3V9lChoBkdAcMxm/WUbDWgHS/loCEdAlJNeaWom5XV9lChoBkdAcqi2pAD7qWgHS/9oCEdAlJNpN47ihnV9lChoBkdAcG6PHktEomgHS+1oCEdAlJS+XeFcp3V9lChoBkdAcRQ66asp5WgHTREBaAhHQJSVzLpzLfV1fZQoaAZHQHKPMpXp4bFoB00cAWgIR0CUlf2XLNfPdX2UKGgGR0Bv+y1uzhP1aAdNEgFoCEdAlJYKQaJhv3V9lChoBkdAcD5Ug0TDfmgHTQEBaAhHQJSWEWYWtU51fZQoaAZHQGATig9Net1oB03oA2gIR0CUlsH1e0HAdX2UKGgGR0ByIoEovzvraAdNBgFoCEdAlJbCAc1fmnV9lChoBkdAbQ7g6U7jk2gHS/JoCEdAlJc9lqagEnV9lChoBkdAcX+bVBlcyGgHTRYBaAhHQJSZW49X9zh1fZQoaAZHQHGIRTfixV1oB00TAWgIR0CUmfNMXaakdX2UKGgGR0BxJt49ovi+aAdNCwFoCEdAlJpmXsw+MnV9lChoBkdAbADQyAQQMGgHTRIBaAhHQJSbU8A7xNJ1fZQoaAZHQHGnEcfeUINoB0v4aAhHQJSbYm+j/Mp1fZQoaAZHQHI+RZ6lchVoB0vqaAhHQJScRe3QUpN1fZQoaAZHQHKjUaya/h5oB0v5aAhHQJSc5aUzKtB1fZQoaAZHQHCG9ZRsMy9oB0vmaAhHQJSdcNVinYR1fZQoaAZHQHCHuxGDtgNoB0vjaAhHQJSem5AhStN1fZQoaAZHQG8qYpUgjhVoB0vtaAhHQJSew8ox59p1fZQoaAZHQHHebt7a7EpoB0vpaAhHQJSezQtz0Yl1fZQoaAZHQHGlJhBqsU9oB009AWgIR0CUntd+G47SdX2UKGgGR0BzMKb/ffoBaAdNAQFoCEdAlJ9+7pV0cXV9lChoBkdAc05GcnVoYmgHS+xoCEdAlJ99PgvUSnV9lChoBkdAcQfUN8VpK2gHTRoBaAhHQJSgl4xDb8F1fZQoaAZHQHC5LQgLZzxoB00YAWgIR0CUoQPGACnxdX2UKGgGR0BxTJoi9qUNaAdL2WgIR0CUoT/3FkxzdX2UKGgGR0BxXL9qDbrUaAdNEAFoCEdAlKJKufVZtHV9lChoBkdAcqoCGetjkWgHS99oCEdAlKJe/UONHnV9lChoBkdAcQM/4Irvs2gHS/5oCEdAlKKHC4z7/HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}