Upload PPO LunarLander-v2 trained
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 235.80 +/- 37.76
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7861ec122cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7861ec122d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7861ec122dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7861ec122e60>", "_build": "<function ActorCriticPolicy._build at 0x7861ec122ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7861ec122f80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7861ec123010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7861ec1230a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7861ec123130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7861ec1231c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7861ec123250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7861ec1232e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7861ec2b7e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700575804243105431, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBBxb1G7jA/MsNdPT8Mtr4jYwW9OrMRPAAAAAAAAAAA8wpJvhCyiD+bkw6/gzirvli3L74XvDm+AAAAAAAAAACa9UG9zN+XP8JTJ77m7Kq+GsHhvb/phrwAAAAAAAAAAJpxZrtIg5G6sU2MNo0RmTHI3DI6Ep2ltQAAgD8AAIA/c2emvcMpe7ru3nE13KVvMNwlNDqrPqy0AACAPwAAAADN+NW8KeRTujYmorNlfG0v/sX+Ooe/pzMAAIA/AACAP5oyEj7zO7k/n7oOPya4Or7RjXQ+R7yPPgAAAAAAAAAA83iaPT8cmj+STIs+wW+zvi9NEz7RHwg+AAAAAAAAAABNlfO904SbPhyqnT0rcKG+UaTuO0jc9zwAAAAAAAAAAM2G2D0KYIA/flM5Pm/2wL4yoAk+ID0mPgAAAAAAAAAARn5gPtiPOz9WlUi+XCezvt0Gtzx6ppi9AAAAAAAAAACNv1A+wROQPy5T6z5JSN6+wDa2Pj5GAz4AAAAAAAAAAE2EBL2PylG6Nn21tetKrrANATE7oMf7NAAAgD8AAIA/mkGkPSd8tz9jubk+vT1gviCkAz42VTE+AAAAAAAAAACNuK09rkf2uv3WJryNxo48ovVLvCJbdj0AAIA/AAAAAE3DRD1HMhg+gtWHvkSKIL5uZ7m9X1uSvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC24WYWtU6MAWyUTQkBjAF0lEdAoHO1XJYDDHV9lChoBkdAcWoglF+d9WgHTRMBaAhHQKB0cx8lXzV1fZQoaAZHQHE6CN0eU6hoB009AWgIR0CgdI9ZaFEidX2UKGgGR0BxQOsDGLk0aAdNLQFoCEdAoHUnizcAR3V9lChoBkdAbrMUfPomomgHTTIBaAhHQKB2rb8m8dx1fZQoaAZHQG/YPomois5oB01RAWgIR0Cgdv5g5R0mdX2UKGgGR0BuN7IikftAaAdNPgFoCEdAoHcNEE1VHXV9lChoBkdAcKdHIp6QeWgHTSUBaAhHQKB3HJp35et1fZQoaAZHQG0OMsxwhntoB00nAWgIR0Cgd3sW43FUdX2UKGgGR0ByfamALApKaAdNTAFoCEdAoHewA+6iCnV9lChoBkdAcPaiEQGwA2gHTSkBaAhHQKB34vSMLnd1fZQoaAZHQG3L1DjR2KVoB00+AWgIR0Cgd+95prULdX2UKGgGR0Bsh/CCSRr8aAdNJwFoCEdAoHfw66reZXV9lChoBkdAcZ3sGPgeimgHTTQBaAhHQKB4BZntfHB1fZQoaAZHQG7fzxgAp8ZoB00cAWgIR0CgeHDh99c9dX2UKGgGR0Byfb8n/kvLaAdNVgFoCEdAoHkVyo4uLHV9lChoBkdAcBKlsxfv4WgHTRkBaAhHQKB5M+pwS8J1fZQoaAZHQG/BgBcRlH1oB00+AWgIR0CgeaIt16mgdX2UKGgGR0BumJ/Aj6eoaAdNGgFoCEdAoHnIW3z+WHV9lChoBkdAI/IrWiDdxmgHS8BoCEdAoHrMRpUPx3V9lChoBkdATndAHE/B32gHS9doCEdAoHsCR0U473V9lChoBkdAN8h1HOKO1mgHS95oCEdAoHuByGSIQHV9lChoBkdAUdgxL0z0pWgHS9poCEdAoHv4sd1dPnV9lChoBkdAckh9Ujs2N2gHTUUBaAhHQKB7/httQ9B1fZQoaAZHQG7R+jua4MFoB00yAWgIR0CgfASR8twrdX2UKGgGR0BwZF0lqrR0aAdNSwFoCEdAoHyKEcsDn3V9lChoBkdAcncQqqfe12gHTTgBaAhHQKB8mLrHEMt1fZQoaAZHQHGLANPP9k1oB01gAWgIR0CgfMUYKpkxdX2UKGgGR0BwXlNj9XLeaAdNPwFoCEdAoH0ju4PPLXV9lChoBkdAcGD5WilBQmgHTWABaAhHQKB93JSzgMt1fZQoaAZHQHCovp6hQFdoB000AWgIR0Cgfqwmu1WsdX2UKGgGR0BvFD70nPVvaAdNLQFoCEdAoH61/pdKNHV9lChoBkdAcFilBQemvWgHTVEBaAhHQKCAQjEehf11fZQoaAZHQHFoZCa7VaxoB01XAWgIR0CggLRXOnl5dX2UKGgGR0A/Vh5gPVd5aAdL4WgIR0CggOsWoFV1dX2UKGgGR0Bxvd2dNFjNaAdNPAFoCEdAoIGlo8IRiHV9lChoBkdAb6powmE5AGgHTTgBaAhHQKCCkmZ3LV51fZQoaAZHQHG/YLLIPsloB00iAWgIR0Cggp8gZCOWdX2UKGgGR0BvtH1L8JlbaAdNQQFoCEdAoINq4c3l0nV9lChoBkdAbY3IPsiSq2gHTSEBaAhHQKCDdTrE9+x1fZQoaAZHQHL2a0Y0l7doB00cAWgIR0Cgg5YHoouxdX2UKGgGR0Bwb+DTSb6QaAdNPgFoCEdAoIUZJNCZ4XV9lChoBkdAcRSiPyTY/WgHTcIBaAhHQKCFeFHrhR91fZQoaAZHQHAfBPKuB+ZoB00PAWgIR0CghZxkEs8QdX2UKGgGR0BwjS6/Zdv9aAdNRAFoCEdAoIYgRZlnRXV9lChoBkdAbCf2exwAEWgHTY8BaAhHQKCGO29+PR11fZQoaAZHQHGIWzSkTHtoB000AWgIR0Cgho7cwg1WdX2UKGgGR0BbjKfWcz68aAdN6ANoCEdAoIc03AEdNnV9lChoBkdAbZ7JKaoddWgHTRUBaAhHQKCSCqioKlZ1fZQoaAZHQHFx3sw+MZRoB01XAWgIR0CgkkYB/7SBdX2UKGgGR0Byn7l1bJOnaAdNWAFoCEdAoJK9nCfpU3V9lChoBkdAcfFf2saKk2gHTTUBaAhHQKCTNUWl/H51fZQoaAZHQHBG3tv4ubtoB01BAWgIR0Cgk3fetSyddX2UKGgGR0BttMZBLPD6aAdNTQFoCEdAoJRnqs2ehHV9lChoBkdAbtkMPz4DcWgHTVwBaAhHQKCUjtaY/ml1fZQoaAZHQHAgTQ7cO9ZoB00fAWgIR0CglJ2KEWZadX2UKGgGR0ByCGPhhpg1aAdNggFoCEdAoJU894eLenV9lChoBkdAch88uSOinGgHTS8BaAhHQKCVpPdl/Yt1fZQoaAZHQG+pExREWqNoB00hAWgIR0Cgljrns9jgdX2UKGgGR0Bve/Mr3CbdaAdNSAFoCEdAoJZ70WdmQXV9lChoBkdAciijcmBvrGgHTT0CaAhHQKCW2KtPpIN1fZQoaAZHQHBXMSK3uu1oB01vAWgIR0CglvNbC79RdX2UKGgGR0ByUA4uK4x2aAdNRwFoCEdAoJhkAT7EYXV9lChoBkdAcSwlA/s3Q2gHTT8BaAhHQKCYywXZXdV1fZQoaAZHQHBB4lyBCldoB01vAWgIR0CgmPG2LHdXdX2UKGgGR0Bxis3aSLZSaAdN7QFoCEdAoJjyBun/DXV9lChoBkdAcDszollbvGgHTTMBaAhHQKCZDlmOEM91fZQoaAZHQHKRoPoV2zRoB00nAWgIR0CgmRYlhPTHdX2UKGgGR0Bx4yI9C/oJaAdNAgJoCEdAoJk0AggX/HV9lChoBkdAcBx6bvw3HmgHS/doCEdAoJk+76Hj63V9lChoBkdAcfFi8nNPg2gHTRgBaAhHQKCZmbgCOm11fZQoaAZHQECfByjpLVZoB0vsaAhHQKCZ5EFW4mV1fZQoaAZHQHG2QSrYGt9oB003AWgIR0Cgmisajvd/dX2UKGgGR0BwXuHwgDA8aAdNFQFoCEdAoJrk3qAz6HV9lChoBkdAcfUpWmxdIGgHTU8BaAhHQKCbBWBBiTd1fZQoaAZHQHDfsOby6MBoB00nAWgIR0Cgm8UrK/21dX2UKGgGR0BxOqGO+7DmaAdNUQFoCEdAoJwOVmjCYXV9lChoBkdAcOlbSJCSimgHTQQBaAhHQKCdIv38GcF1fZQoaAZHQHD/VuWKMvRoB00iAWgIR0CgnXcm8dxRdX2UKGgGR0Bxl9vrGBFvaAdNNQFoCEdAoJ14DcM3InV9lChoBkdAb7jdiUgSvmgHTRwBaAhHQKCdgs3AEdN1fZQoaAZHQHJjiQo1DShoB00bAWgIR0CgndgNgBtDdX2UKGgGR0Bt56+WWyC4aAdNJAFoCEdAoJ3zhFVktnV9lChoBkdAbkJlJ6IFeWgHTTgBaAhHQKCeBeO4oZ11fZQoaAZHQHGFsHjZL7JoB02pAWgIR0Cgnhxu89OidX2UKGgGR0A889d/rjYJaAdL7GgIR0CgnilglWwNdX2UKGgGR0BwyGLrHEMtaAdNFgFoCEdAoJ532ugYg3V9lChoBkdAcR91EVnEl2gHTVYBaAhHQKCejtiQT251fZQoaAZHQDnovPC2tuFoB0vkaAhHQKCe3H8TBZZ1fZQoaAZHQGxKyDZlFttoB00JAWgIR0CgoDu8kD6ndX2UKGgGR0Bylhk7OmiyaAdL+2gIR0CgoE4hEBsAdX2UKGgGR0Byb0iV0Lc9aAdNfwFoCEdAoKHbtCzC13V9lChoBkdAcLBiTt9hJGgHTRIBaAhHQKCidmcOLBN1fZQoaAZHQHCqorjHXEtoB003AWgIR0CgpBaqKgqWdX2UKGgGR0BxQsf1YhdMaAdNGQFoCEdAoKRawGGEf3V9lChoBkdAcfE+K0lZ5mgHTUUBaAhHQKCkev8qFyt1fZQoaAZHQHH1bLIPsiVoB01LAWgIR0CgpKgiml67dX2UKGgGR0Bscl5D7ZWaaAdNMQFoCEdAoKSpgy/KyXV9lChoBkdAcSd4G2TgVGgHTTkBaAhHQKCkt+CsfaJ1fZQoaAZHQHB9jD4xk/doB00QAWgIR0CgpMA88s+WdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:781f0fd738c8be75b62e94393e53f638fab3bae344248d0c295bfdfb5ffab999
|
3 |
+
size 148042
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7861ec122cb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7861ec122d40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7861ec122dd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7861ec122e60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7861ec122ef0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7861ec122f80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7861ec123010>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7861ec1230a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7861ec123130>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7861ec1231c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7861ec123250>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7861ec1232e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7861ec2b7e00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1700575804243105431,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBBxb1G7jA/MsNdPT8Mtr4jYwW9OrMRPAAAAAAAAAAA8wpJvhCyiD+bkw6/gzirvli3L74XvDm+AAAAAAAAAACa9UG9zN+XP8JTJ77m7Kq+GsHhvb/phrwAAAAAAAAAAJpxZrtIg5G6sU2MNo0RmTHI3DI6Ep2ltQAAgD8AAIA/c2emvcMpe7ru3nE13KVvMNwlNDqrPqy0AACAPwAAAADN+NW8KeRTujYmorNlfG0v/sX+Ooe/pzMAAIA/AACAP5oyEj7zO7k/n7oOPya4Or7RjXQ+R7yPPgAAAAAAAAAA83iaPT8cmj+STIs+wW+zvi9NEz7RHwg+AAAAAAAAAABNlfO904SbPhyqnT0rcKG+UaTuO0jc9zwAAAAAAAAAAM2G2D0KYIA/flM5Pm/2wL4yoAk+ID0mPgAAAAAAAAAARn5gPtiPOz9WlUi+XCezvt0Gtzx6ppi9AAAAAAAAAACNv1A+wROQPy5T6z5JSN6+wDa2Pj5GAz4AAAAAAAAAAE2EBL2PylG6Nn21tetKrrANATE7oMf7NAAAgD8AAIA/mkGkPSd8tz9jubk+vT1gviCkAz42VTE+AAAAAAAAAACNuK09rkf2uv3WJryNxo48ovVLvCJbdj0AAIA/AAAAAE3DRD1HMhg+gtWHvkSKIL5uZ7m9X1uSvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC24WYWtU6MAWyUTQkBjAF0lEdAoHO1XJYDDHV9lChoBkdAcWoglF+d9WgHTRMBaAhHQKB0cx8lXzV1fZQoaAZHQHE6CN0eU6hoB009AWgIR0CgdI9ZaFEidX2UKGgGR0BxQOsDGLk0aAdNLQFoCEdAoHUnizcAR3V9lChoBkdAbrMUfPomomgHTTIBaAhHQKB2rb8m8dx1fZQoaAZHQG/YPomois5oB01RAWgIR0Cgdv5g5R0mdX2UKGgGR0BuN7IikftAaAdNPgFoCEdAoHcNEE1VHXV9lChoBkdAcKdHIp6QeWgHTSUBaAhHQKB3HJp35et1fZQoaAZHQG0OMsxwhntoB00nAWgIR0Cgd3sW43FUdX2UKGgGR0ByfamALApKaAdNTAFoCEdAoHewA+6iCnV9lChoBkdAcPaiEQGwA2gHTSkBaAhHQKB34vSMLnd1fZQoaAZHQG3L1DjR2KVoB00+AWgIR0Cgd+95prULdX2UKGgGR0Bsh/CCSRr8aAdNJwFoCEdAoHfw66reZXV9lChoBkdAcZ3sGPgeimgHTTQBaAhHQKB4BZntfHB1fZQoaAZHQG7fzxgAp8ZoB00cAWgIR0CgeHDh99c9dX2UKGgGR0Byfb8n/kvLaAdNVgFoCEdAoHkVyo4uLHV9lChoBkdAcBKlsxfv4WgHTRkBaAhHQKB5M+pwS8J1fZQoaAZHQG/BgBcRlH1oB00+AWgIR0CgeaIt16mgdX2UKGgGR0BumJ/Aj6eoaAdNGgFoCEdAoHnIW3z+WHV9lChoBkdAI/IrWiDdxmgHS8BoCEdAoHrMRpUPx3V9lChoBkdATndAHE/B32gHS9doCEdAoHsCR0U473V9lChoBkdAN8h1HOKO1mgHS95oCEdAoHuByGSIQHV9lChoBkdAUdgxL0z0pWgHS9poCEdAoHv4sd1dPnV9lChoBkdAckh9Ujs2N2gHTUUBaAhHQKB7/httQ9B1fZQoaAZHQG7R+jua4MFoB00yAWgIR0CgfASR8twrdX2UKGgGR0BwZF0lqrR0aAdNSwFoCEdAoHyKEcsDn3V9lChoBkdAcncQqqfe12gHTTgBaAhHQKB8mLrHEMt1fZQoaAZHQHGLANPP9k1oB01gAWgIR0CgfMUYKpkxdX2UKGgGR0BwXlNj9XLeaAdNPwFoCEdAoH0ju4PPLXV9lChoBkdAcGD5WilBQmgHTWABaAhHQKB93JSzgMt1fZQoaAZHQHCovp6hQFdoB000AWgIR0Cgfqwmu1WsdX2UKGgGR0BvFD70nPVvaAdNLQFoCEdAoH61/pdKNHV9lChoBkdAcFilBQemvWgHTVEBaAhHQKCAQjEehf11fZQoaAZHQHFoZCa7VaxoB01XAWgIR0CggLRXOnl5dX2UKGgGR0A/Vh5gPVd5aAdL4WgIR0CggOsWoFV1dX2UKGgGR0Bxvd2dNFjNaAdNPAFoCEdAoIGlo8IRiHV9lChoBkdAb6powmE5AGgHTTgBaAhHQKCCkmZ3LV51fZQoaAZHQHG/YLLIPsloB00iAWgIR0Cggp8gZCOWdX2UKGgGR0BvtH1L8JlbaAdNQQFoCEdAoINq4c3l0nV9lChoBkdAbY3IPsiSq2gHTSEBaAhHQKCDdTrE9+x1fZQoaAZHQHL2a0Y0l7doB00cAWgIR0Cgg5YHoouxdX2UKGgGR0Bwb+DTSb6QaAdNPgFoCEdAoIUZJNCZ4XV9lChoBkdAcRSiPyTY/WgHTcIBaAhHQKCFeFHrhR91fZQoaAZHQHAfBPKuB+ZoB00PAWgIR0CghZxkEs8QdX2UKGgGR0BwjS6/Zdv9aAdNRAFoCEdAoIYgRZlnRXV9lChoBkdAbCf2exwAEWgHTY8BaAhHQKCGO29+PR11fZQoaAZHQHGIWzSkTHtoB000AWgIR0Cgho7cwg1WdX2UKGgGR0BbjKfWcz68aAdN6ANoCEdAoIc03AEdNnV9lChoBkdAbZ7JKaoddWgHTRUBaAhHQKCSCqioKlZ1fZQoaAZHQHFx3sw+MZRoB01XAWgIR0CgkkYB/7SBdX2UKGgGR0Byn7l1bJOnaAdNWAFoCEdAoJK9nCfpU3V9lChoBkdAcfFf2saKk2gHTTUBaAhHQKCTNUWl/H51fZQoaAZHQHBG3tv4ubtoB01BAWgIR0Cgk3fetSyddX2UKGgGR0BttMZBLPD6aAdNTQFoCEdAoJRnqs2ehHV9lChoBkdAbtkMPz4DcWgHTVwBaAhHQKCUjtaY/ml1fZQoaAZHQHAgTQ7cO9ZoB00fAWgIR0CglJ2KEWZadX2UKGgGR0ByCGPhhpg1aAdNggFoCEdAoJU894eLenV9lChoBkdAch88uSOinGgHTS8BaAhHQKCVpPdl/Yt1fZQoaAZHQG+pExREWqNoB00hAWgIR0Cgljrns9jgdX2UKGgGR0Bve/Mr3CbdaAdNSAFoCEdAoJZ70WdmQXV9lChoBkdAciijcmBvrGgHTT0CaAhHQKCW2KtPpIN1fZQoaAZHQHBXMSK3uu1oB01vAWgIR0CglvNbC79RdX2UKGgGR0ByUA4uK4x2aAdNRwFoCEdAoJhkAT7EYXV9lChoBkdAcSwlA/s3Q2gHTT8BaAhHQKCYywXZXdV1fZQoaAZHQHBB4lyBCldoB01vAWgIR0CgmPG2LHdXdX2UKGgGR0Bxis3aSLZSaAdN7QFoCEdAoJjyBun/DXV9lChoBkdAcDszollbvGgHTTMBaAhHQKCZDlmOEM91fZQoaAZHQHKRoPoV2zRoB00nAWgIR0CgmRYlhPTHdX2UKGgGR0Bx4yI9C/oJaAdNAgJoCEdAoJk0AggX/HV9lChoBkdAcBx6bvw3HmgHS/doCEdAoJk+76Hj63V9lChoBkdAcfFi8nNPg2gHTRgBaAhHQKCZmbgCOm11fZQoaAZHQECfByjpLVZoB0vsaAhHQKCZ5EFW4mV1fZQoaAZHQHG2QSrYGt9oB003AWgIR0Cgmisajvd/dX2UKGgGR0BwXuHwgDA8aAdNFQFoCEdAoJrk3qAz6HV9lChoBkdAcfUpWmxdIGgHTU8BaAhHQKCbBWBBiTd1fZQoaAZHQHDfsOby6MBoB00nAWgIR0Cgm8UrK/21dX2UKGgGR0BxOqGO+7DmaAdNUQFoCEdAoJwOVmjCYXV9lChoBkdAcOlbSJCSimgHTQQBaAhHQKCdIv38GcF1fZQoaAZHQHD/VuWKMvRoB00iAWgIR0CgnXcm8dxRdX2UKGgGR0Bxl9vrGBFvaAdNNQFoCEdAoJ14DcM3InV9lChoBkdAb7jdiUgSvmgHTRwBaAhHQKCdgs3AEdN1fZQoaAZHQHJjiQo1DShoB00bAWgIR0CgndgNgBtDdX2UKGgGR0Bt56+WWyC4aAdNJAFoCEdAoJ3zhFVktnV9lChoBkdAbkJlJ6IFeWgHTTgBaAhHQKCeBeO4oZ11fZQoaAZHQHGFsHjZL7JoB02pAWgIR0Cgnhxu89OidX2UKGgGR0A889d/rjYJaAdL7GgIR0CgnilglWwNdX2UKGgGR0BwyGLrHEMtaAdNFgFoCEdAoJ532ugYg3V9lChoBkdAcR91EVnEl2gHTVYBaAhHQKCejtiQT251fZQoaAZHQDnovPC2tuFoB0vkaAhHQKCe3H8TBZZ1fZQoaAZHQGxKyDZlFttoB00JAWgIR0CgoDu8kD6ndX2UKGgGR0Bylhk7OmiyaAdL+2gIR0CgoE4hEBsAdX2UKGgGR0Byb0iV0Lc9aAdNfwFoCEdAoKHbtCzC13V9lChoBkdAcLBiTt9hJGgHTRIBaAhHQKCidmcOLBN1fZQoaAZHQHCqorjHXEtoB003AWgIR0CgpBaqKgqWdX2UKGgGR0BxQsf1YhdMaAdNGQFoCEdAoKRawGGEf3V9lChoBkdAcfE+K0lZ5mgHTUUBaAhHQKCkev8qFyt1fZQoaAZHQHH1bLIPsiVoB01LAWgIR0CgpKgiml67dX2UKGgGR0Bscl5D7ZWaaAdNMQFoCEdAoKSpgy/KyXV9lChoBkdAcSd4G2TgVGgHTTkBaAhHQKCkt+CsfaJ1fZQoaAZHQHB9jD4xk/doB00QAWgIR0CgpMA88s+WdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2163cda2c7d7d1c51f96806adaf414011325149f41dd5afad194e90e51bd44b5
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9a880be879dd03d5d26fae5b5c3c28a9a5e87f3128ac9d42f54ad65a20c7e98
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (183 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 235.7953501, "std_reward": 37.76275577860918, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-21T14:40:40.900740"}
|