|
--- |
|
library_name: transformers |
|
license: bsd-3-clause |
|
base_model: MIT/ast-finetuned-audioset-10-10-0.4593 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan |
|
results: |
|
- task: |
|
type: audio-classification |
|
name: Audio Classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- type: accuracy |
|
value: 0.89 |
|
name: Accuracy |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan |
|
|
|
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5321 |
|
- Accuracy: 0.89 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 5.3547 | 0.9912 | 28 | 1.1577 | 0.73 | |
|
| 2.8199 | 1.9823 | 56 | 0.7326 | 0.83 | |
|
| 2.0591 | 2.9735 | 84 | 0.6054 | 0.87 | |
|
| 1.5609 | 4.0 | 113 | 0.5425 | 0.89 | |
|
| 1.5001 | 4.9558 | 140 | 0.5321 | 0.89 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.0 |
|
- Pytorch 2.5.0 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.20.1 |
|
|