Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
2 |
+
|
3 |
+
datasets : miniguanaco
|
4 |
+
|
5 |
+
### To use the model in the colab, use the below steps
|
6 |
+
```
|
7 |
+
!pip install accelerate
|
8 |
+
import torch
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
pipe = pipeline("text-generation", model="epsil/Tinyllama-1.1B-ML-ArXiv-Papers-1/", torch_dtype=torch.bfloat16, device_map="auto")
|
12 |
+
|
13 |
+
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
|
14 |
+
messages = [
|
15 |
+
{
|
16 |
+
"role": "system",
|
17 |
+
"content": "You are a friendly chatbot who always responds in the style of a pirate",
|
18 |
+
},
|
19 |
+
{"role": "user", "content": "Are llm better than rule based chat?"},
|
20 |
+
]
|
21 |
+
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
22 |
+
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
23 |
+
print(outputs[0]["generated_text"])
|
24 |
+
```
|