File size: 2,053 Bytes
046c557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1de009e
 
 
 
 
046c557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1de009e
 
 
 
 
046c557
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bert-base-multilingual-uncased-finetuned-keyword
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-multilingual-uncased-finetuned-keyword

This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.7290
- Accuracy: 0.0036
- Precision: 0.0015
- Recall: 0.0036
- F1: 0.0017

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 1.0   | 269  | 6.7517          | 0.0012   | 0.0000    | 0.0012 | 0.0000 |
| 6.7625        | 2.0   | 538  | 6.7499          | 0.0012   | 0.0000    | 0.0012 | 0.0000 |
| 6.7625        | 3.0   | 807  | 6.7366          | 0.0024   | 0.0003    | 0.0024 | 0.0005 |
| 6.7465        | 4.0   | 1076 | 6.7290          | 0.0036   | 0.0015    | 0.0036 | 0.0017 |
| 6.7465        | 5.0   | 1345 | 6.7276          | 0.0030   | 0.0015    | 0.0030 | 0.0013 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1