--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-base-multilingual-uncased-finetuned-keyword results: [] --- # bert-base-multilingual-uncased-finetuned-keyword This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.7290 - Accuracy: 0.0036 - Precision: 0.0015 - Recall: 0.0036 - F1: 0.0017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 269 | 6.7517 | 0.0012 | 0.0000 | 0.0012 | 0.0000 | | 6.7625 | 2.0 | 538 | 6.7499 | 0.0012 | 0.0000 | 0.0012 | 0.0000 | | 6.7625 | 3.0 | 807 | 6.7366 | 0.0024 | 0.0003 | 0.0024 | 0.0005 | | 6.7465 | 4.0 | 1076 | 6.7290 | 0.0036 | 0.0015 | 0.0036 | 0.0017 | | 6.7465 | 5.0 | 1345 | 6.7276 | 0.0030 | 0.0015 | 0.0030 | 0.0013 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1