erfan226 commited on
Commit
22cef6b
1 Parent(s): 2479c30

Create README.MD

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ erfan226/persian-t5-paraphraser
2
+
3
+ This is a paraphrase model that works on the Persian language. It is based on [the monolingual T5 model](https://huggingface.co/Ahmad/parsT5-base)
4
+ language:
5
+ - {fa}
6
+ # Usage (Sentence-Transformers)
7
+
8
+ ```python
9
+
10
+ pip install -U sentence-transformers
11
+ Then you can use the model like this:
12
+
13
+ from sentence_transformers import SentenceTransformer
14
+ sentences = ["This is an example sentence", "Each sentence is converted"]
15
+
16
+ model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2')
17
+ embeddings = model.encode(sentences)
18
+ print(embeddings)
19
+ Usage (HuggingFace Transformers)
20
+ Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
21
+
22
+ from transformers import AutoTokenizer, AutoModel
23
+ import torch
24
+
25
+
26
+ #Mean Pooling - Take attention mask into account for correct averaging
27
+ def mean_pooling(model_output, attention_mask):
28
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
29
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
30
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
31
+
32
+
33
+ # Sentences we want sentence embeddings for
34
+ sentences = ['This is an example sentence', 'Each sentence is converted']
35
+
36
+ # Load model from HuggingFace Hub
37
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
38
+ model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
39
+
40
+ # Tokenize sentences
41
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
42
+
43
+ # Compute token embeddings
44
+ with torch.no_grad():
45
+ model_output = model(**encoded_input)
46
+
47
+ # Perform pooling. In this case, max pooling.
48
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
49
+
50
+ print("Sentence embeddings:")
51
+ print(sentence_embeddings)
52
+
53
+ ```