ericzzz commited on
Commit
68d6f7b
β€’
1 Parent(s): 300e555

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -4
README.md CHANGED
@@ -18,7 +18,7 @@ Falcon-RW-1B-Instruct-OpenOrca is a 1B parameter, causal decoder-only model base
18
 
19
  **πŸ“Š Evaluation Results**
20
 
21
- Falcon-RW-1B-Instruct-OpenOrca is the #1 ranking model on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) in ~1.5B parameters category! A detailed result can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ericzzz__falcon-rw-1b-instruct-openorca).
22
 
23
  | Metric | falcon-rw-1b-instruct-openorca | falcon-rw-1b |
24
  |------------|-------------------------------:|-------------:|
@@ -27,9 +27,8 @@ Falcon-RW-1B-Instruct-OpenOrca is the #1 ranking model on [Open LLM Leaderboard]
27
  | MMLU | 28.77 | 25.28 |
28
  | TruthfulQA | 37.42 | 35.96 |
29
  | Winogrande | 60.69 | 62.04 |
30
- | GSM8K | 1.21 | 0.53 |
31
- | DROP | 21.94 | 4.64 |
32
- | **Average**| **35.08** | **32.44** |
33
 
34
  **πŸš€ Motivations**
35
  1. To create a smaller, open-source, instruction-finetuned, ready-to-use model accessible for users with limited computational resources (lower-end consumer GPUs).
 
18
 
19
  **πŸ“Š Evaluation Results**
20
 
21
+ Falcon-RW-1B-Instruct-OpenOrca was the #1 ranking model (unfortunately not anymore) on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) in ~1.5B parameters category! A detailed result can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ericzzz__falcon-rw-1b-instruct-openorca).
22
 
23
  | Metric | falcon-rw-1b-instruct-openorca | falcon-rw-1b |
24
  |------------|-------------------------------:|-------------:|
 
27
  | MMLU | 28.77 | 25.28 |
28
  | TruthfulQA | 37.42 | 35.96 |
29
  | Winogrande | 60.69 | 62.04 |
30
+ | GSM8K | 3.41 | 0.53 |
31
+ | **Average**| **37.63** | **37.07** |
 
32
 
33
  **πŸš€ Motivations**
34
  1. To create a smaller, open-source, instruction-finetuned, ready-to-use model accessible for users with limited computational resources (lower-end consumer GPUs).