ernestum commited on
Commit
8b31ac3
1 Parent(s): d81c1c2

Initial commit

Browse files
README.md CHANGED
@@ -87,3 +87,8 @@ OrderedDict([('batch_size', 512),
87
  'norm_reward': True},
88
  'norm_reward': False})])
89
  ```
 
 
 
 
 
 
87
  'norm_reward': True},
88
  'norm_reward': False})])
89
  ```
90
+
91
+ # Environment Arguments
92
+ ```python
93
+ {'render_mode': 'rgb_array'}
94
+ ```
env_kwargs.yml CHANGED
@@ -1 +1 @@
1
- {}
 
1
+ render_mode: rgb_array
ppo-seals-MountainCar-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eeafa5a1bbde997865f4caf9a026492406ba2c7d94c474013e232411d622c8ab
3
- size 138501
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f516c3fa662cd614d5ea6b816ee7a360ad738000e149ad3128e9a734557781ad
3
+ size 138505
ppo-seals-MountainCar-v0/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 2.1.0
 
1
+ 2.2.0a3
ppo-seals-MountainCar-v0/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f184ff7a040>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f184ff7a0d0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f184ff7a160>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f184ff7a1f0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f184ff7a280>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f184ff7a310>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f184ff7a3a0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f184ff7a430>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f184ff7a4c0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f184ff7a550>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f184ff7a5e0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f184ff7a670>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7f184ff55ab0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6ccee39ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6ccee39f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6ccedbe040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6ccedbe0d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6ccedbe160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6ccedbe1f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6ccedbe280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6ccedbe310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6ccedbe3a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6ccedbe430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6ccedbe4c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6ccedbe550>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f6ccee24c60>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
ppo-seals-MountainCar-v0/system_info.txt CHANGED
@@ -1,6 +1,6 @@
1
  - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
  - Python: 3.8.10
3
- - Stable-Baselines3: 2.1.0
4
  - PyTorch: 2.0.1+cu117
5
  - GPU Enabled: False
6
  - Numpy: 1.24.4
 
1
  - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
  - Python: 3.8.10
3
+ - Stable-Baselines3: 2.2.0a3
4
  - PyTorch: 2.0.1+cu117
5
  - GPU Enabled: False
6
  - Numpy: 1.24.4
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dfcea509de7c1b1323b96d2ba6e68ebe8f5924892b90b54aa65ce49f7756dc4
3
+ size 143835
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -97.0, "std_reward": 8.258329128825032, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-15T13:50:09.495577"}
 
1
+ {"mean_reward": -97.0, "std_reward": 8.258329128825032, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-18T09:43:39.460818"}
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f9f676caa1f922426dddd659c6ed28ee065eb3800b0beb426ced4b03df62e4fb
3
  size 114460
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdeb0e756f12a772c492c7bc0011bd8abb8b0fbbd94a6e3c36325e3476aa845b
3
  size 114460
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e5cf903957df5a7298c7c4285b9cfed43095dae50144cf1ef1a12c59f0947389
3
- size 1687
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e4959055afcb1760e6aa9d920b0072e201a1e15a32224107646b72f89a68289
3
+ size 1698