File size: 1,804 Bytes
e8d5ac0 576d681 e8d5ac0 f3ea640 e8d5ac0 714080b e8d5ac0 714080b e8d5ac0 714080b bd63068 e8d5ac0 e7c9ffc e8d5ac0 576d681 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
model-index:
- name: llama2-7bn-xsum-cnn-adapter
results: []
datasets:
- cnn_dailymail
- EdinburghNLP/xsum
language:
- en
library_name: adapter-transformers
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama2-7bn-xsum-cnn-adapter
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on XSum and CNN/DM. LoRA adapter model based on LLama2 7bn. You can view all the implementation details on the [GitHub project](https://github.com/ernlavr/llamarizer)
## Weights and Biases Documentation: Training and Eval
See [Weights and Biases](https://wandb.ai/ernlavr/adv_nlp2023/runs/t8icitt1) for training details.
## Training procedure
- Input source document wrapped in a prompt: "Summarize the following article:\<INPUT\>; Summary: \<OUTPUT\>"
- Trained using cross-entropy on CausalLM task
- Data splits consist of sequences up to 512 tokens:
- Training n-datapoints: 115'354 XSum; 27494 CNN
- Val n-datapoints: 3928 XSum; 1211 CNN
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 558.0
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
Achieves loss=2.021 on valdiation split, see W&B run (link above) for more details.
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.1
- Datasets 2.14.6
- Tokenizers 0.14.1 |