LunarLander Model Launched
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 288.17 +/- 23.46
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23f4509670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23f4509700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23f4509790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23f4509820>", "_build": "<function ActorCriticPolicy._build at 0x7f23f45098b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f23f4509940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23f45099d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23f4509a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f23f4509af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23f4509b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23f4509c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23f4509ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f23f4503780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675300433058865312, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq9OLzca0S8XBypPctPRr1Bh6u9so6ZvgAAgD8AAIA/s/W0PaNrKD3T6s690gCEvpXpVr3CVZW9AAAAAAAAAAAzy9a9wWESPznppLyC6NO+1+nEvWbYbj0AAAAAAAAAANqckr1cSx68449WPnafJ71y+Us4/etAPQAAgD8AAIA/syU3vbjAnbvdqhU8q4mOPIfk5bz213I9AACAPwAAgD+aT/G8vji3PxqRzb3qhom+zqWdu4zAvb0AAAAAAAAAAIAd9D18Xvk+6nyEvhNJ1L4SipS9u4DduwAAAAAAAAAAQNZ3vmL9hz/KbuK+USkpvyaTtr5+78K9AAAAAAAAAAAaH5W99lw9uufeF7RVnTEu/IZHu2h9pzMAAAAAAACAPwCwH7vH/bM/AGX8vWDo8b0Hejc75lTiPAAAAAAAAAAAZsKPPI8CEbo62oy8xCEtsxxwM7uDzmozAACAPwAAgD/gdji+sFI6P3QaDr4XLhu/kZmevhtizzwAAAAAAAAAAIAzjz1LlS8/KUMIvQ5hvL6FSYM95AewvQAAAAAAAAAAZjKiu/lTQj7iIKM9LatyvsZ+iDwDyh66AAAAAAAAAACtky0+jg+OP+U+CD/raO++rFZZPpWtlz4AAAAAAAAAAHO6jb0OeLo/y39Bvqwmu76zoUu9vhjbvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDmd+NccScECUhpRSlIwBbJRL4owBdJRHQLCanT9KmKt1fZQoaAZoCWgPQwjBb0OMl6pyQJSGlFKUaBVL62gWR0CwmqHljmSydX2UKGgGaAloD0MIn3O366VBckCUhpRSlGgVS8loFkdAsJqudc0Lt3V9lChoBmgJaA9DCFc/NslP9XBAlIaUUpRoFUv5aBZHQLCayJJXhfl1fZQoaAZoCWgPQwjScqCH2sNSQJSGlFKUaBVLxGgWR0CwmvPCEYfodX2UKGgGaAloD0MINq/qrJbCcECUhpRSlGgVS81oFkdAsJr94/u9e3V9lChoBmgJaA9DCLrb9dKUB29AlIaUUpRoFUvxaBZHQLCbC5U96kZ1fZQoaAZoCWgPQwjxoURL3lNyQJSGlFKUaBVL5GgWR0CwmxRceKbbdX2UKGgGaAloD0MI9UpZhrhOcUCUhpRSlGgVS9hoFkdAsJsmgM+eOHV9lChoBmgJaA9DCEm70cd8RnFAlIaUUpRoFUvNaBZHQLCbLauwHJN1fZQoaAZoCWgPQwhUrYVZqBdyQJSGlFKUaBVLyGgWR0Cwmzd2LYPHdX2UKGgGaAloD0MInPnVHKDgc0CUhpRSlGgVS9RoFkdAsJtCWldka3V9lChoBmgJaA9DCPQWD++5525AlIaUUpRoFUvWaBZHQLCbdTMqz7d1fZQoaAZoCWgPQwiufmySnylxQJSGlFKUaBVLyWgWR0Cwm65EUj9odX2UKGgGaAloD0MIVisTfqmmckCUhpRSlGgVS+FoFkdAsJvDYf4h2XV9lChoBmgJaA9DCH0h5Ly/QXNAlIaUUpRoFUviaBZHQLCb1DaoMrp1fZQoaAZoCWgPQwhioGtfwLduQJSGlFKUaBVLy2gWR0Cwm9/nGKhtdX2UKGgGaAloD0MIYk1lUdhsckCUhpRSlGgVS+1oFkdAsJvfNu+AVnV9lChoBmgJaA9DCAvtnGZBR3BAlIaUUpRoFUvhaBZHQLCb4X0oSct1fZQoaAZoCWgPQwhlijkI+sVzQJSGlFKUaBVLy2gWR0CwnCeE/SpjdX2UKGgGaAloD0MIz6Pi/86ycECUhpRSlGgVS95oFkdAsJwreLvTgHV9lChoBmgJaA9DCDZaDvTQQXFAlIaUUpRoFUvZaBZHQLCcLk56t1Z1fZQoaAZoCWgPQwhDPBIvTw1yQJSGlFKUaBVLy2gWR0CwnESuMdcTdX2UKGgGaAloD0MIz4O7s/ZdbkCUhpRSlGgVS9toFkdAsJxIIQe3hHV9lChoBmgJaA9DCKA4gH7fHnBAlIaUUpRoFUvIaBZHQLCcU212JSB1fZQoaAZoCWgPQwgs8BXd+uxxQJSGlFKUaBVL1GgWR0CwnFhSgoPTdX2UKGgGaAloD0MIQDBHj9+zckCUhpRSlGgVS8NoFkdAsJyJ8uzyBnV9lChoBmgJaA9DCJ7TLNBuqXJAlIaUUpRoFUvzaBZHQLCclfO2RaJ1fZQoaAZoCWgPQwiEK6BQD+RwQJSGlFKUaBVL52gWR0CwpgsDbJwLdX2UKGgGaAloD0MILEme6zt+c0CUhpRSlGgVS8poFkdAsKYTZezD43V9lChoBmgJaA9DCE1p/S2Bzm9AlIaUUpRoFUvMaBZHQLCmGTs6aLJ1fZQoaAZoCWgPQwhnuAGfXxVyQJSGlFKUaBVL5mgWR0CwpiOtr9EUdX2UKGgGaAloD0MI7pQO1n+ocECUhpRSlGgVS9ZoFkdAsKYpX2dupHV9lChoBmgJaA9DCCOD3EXYa3FAlIaUUpRoFUvGaBZHQLCmWGhmGud1fZQoaAZoCWgPQwhpUZ/kzqBwQJSGlFKUaBVNAAFoFkdAsKZdHskY43V9lChoBmgJaA9DCIi6D0BqvHBAlIaUUpRoFUvWaBZHQLCmdyprDZV1fZQoaAZoCWgPQwjuPzIdOipwQJSGlFKUaBVL3WgWR0Cwpn9diUgTdX2UKGgGaAloD0MIjlcgepIWckCUhpRSlGgVS8xoFkdAsKaTz06HTXV9lChoBmgJaA9DCIV80LPZvXBAlIaUUpRoFUvNaBZHQLCmmqh11W91fZQoaAZoCWgPQwjIsmDij2ZyQJSGlFKUaBVL8WgWR0CwprzgqEvkdX2UKGgGaAloD0MIVdl3RfDKcUCUhpRSlGgVS/VoFkdAsKbGOU+s5nV9lChoBmgJaA9DCJOoF3yapW1AlIaUUpRoFUviaBZHQLCm9JbdJrd1fZQoaAZoCWgPQwiBzM6i9/dxQJSGlFKUaBVL4WgWR0Cwpv+2qkuZdX2UKGgGaAloD0MIDECjdCkOckCUhpRSlGgVS9RoFkdAsKdUu3+db3V9lChoBmgJaA9DCEkrvqHwpW9AlIaUUpRoFUvhaBZHQLCndRTCLuR1fZQoaAZoCWgPQwjGpwAYD5NzQJSGlFKUaBVL22gWR0Cwp3oldC3PdX2UKGgGaAloD0MIguFcwwzqcECUhpRSlGgVS+hoFkdAsKeGmIj4YnV9lChoBmgJaA9DCAcJUb4go2xAlIaUUpRoFUvhaBZHQLCnigVGkN51fZQoaAZoCWgPQwi4c2Gkl6xwQJSGlFKUaBVL2mgWR0Cwp7SN0eU7dX2UKGgGaAloD0MI1Jl7SLiDckCUhpRSlGgVS9ZoFkdAsKfJOwgTy3V9lChoBmgJaA9DCPCLS1Xa43FAlIaUUpRoFUvYaBZHQLCn1CAc1fp1fZQoaAZoCWgPQwjBrFCkO0dxQJSGlFKUaBVNAwFoFkdAsKfvW1+iJ3V9lChoBmgJaA9DCFZFuMmo53JAlIaUUpRoFUviaBZHQLCn9fseGPB1fZQoaAZoCWgPQwgzMV2IVeFxQJSGlFKUaBVL0mgWR0CwqASExqO+dX2UKGgGaAloD0MIQZscPukEcUCUhpRSlGgVS8xoFkdAsKgFUDMeOnV9lChoBmgJaA9DCAhb7PaZu3BAlIaUUpRoFU0BAWgWR0CwqCic0+C9dX2UKGgGaAloD0MIxqcAGE+gcECUhpRSlGgVS+1oFkdAsKhon8baRXV9lChoBmgJaA9DCID0TZqGRnFAlIaUUpRoFUvmaBZHQLCoacI7eVN1fZQoaAZoCWgPQwgxRE5fj3pwQJSGlFKUaBVLymgWR0CwqLJ71Iy1dX2UKGgGaAloD0MIABx79hwBckCUhpRSlGgVS/FoFkdAsKjQiPhhpnV9lChoBmgJaA9DCJwZ/Wg4Q21AlIaUUpRoFUvlaBZHQLCo7UAksz51fZQoaAZoCWgPQwga3UHsDFFwQJSGlFKUaBVL52gWR0CwqPQflp49dX2UKGgGaAloD0MI2PFfIIiZckCUhpRSlGgVS/NoFkdAsKjzZ5AyEnV9lChoBmgJaA9DCN8WLNUF4G5AlIaUUpRoFUvgaBZHQLCpExWDHwR1fZQoaAZoCWgPQwgHJGHfjrVwQJSGlFKUaBVL4mgWR0CwqTkFjd56dX2UKGgGaAloD0MIoBfuXNh6cUCUhpRSlGgVS9doFkdAsKlD9P1tf3V9lChoBmgJaA9DCH2wjA2dUnFAlIaUUpRoFUvaaBZHQLCpUHYHxBp1fZQoaAZoCWgPQwjuYMQ+gVhgQJSGlFKUaBVN6ANoFkdAsKlTblA/s3V9lChoBmgJaA9DCFmK5CuB0HBAlIaUUpRoFUvhaBZHQLCpZ/dIoVp1fZQoaAZoCWgPQwgO2UC62JNzQJSGlFKUaBVNEAFoFkdAsKlyoGY8dXV9lChoBmgJaA9DCAUx0LWvj3BAlIaUUpRoFUvqaBZHQLCpdKDCgsd1fZQoaAZoCWgPQwgDtRg8jOpxQJSGlFKUaBVL8mgWR0CwqZ28yvcKdX2UKGgGaAloD0MI0NVW7O9OcECUhpRSlGgVS8poFkdAsKmfV3EAHXV9lChoBmgJaA9DCCEgX0KFm3BAlIaUUpRoFUvVaBZHQLCpq48lolF1fZQoaAZoCWgPQwhH5/wUR15wQJSGlFKUaBVL1mgWR0Cwqea5kK/mdX2UKGgGaAloD0MI3uUivlO0cECUhpRSlGgVS8hoFkdAsKoIm1IAfnV9lChoBmgJaA9DCFDEIoYdR3NAlIaUUpRoFUvJaBZHQLCqCU8V58l1fZQoaAZoCWgPQwijrN9MTPVvQJSGlFKUaBVL52gWR0CwqheXeFcqdX2UKGgGaAloD0MIf9+/eTH+ckCUhpRSlGgVS/BoFkdAsKo7o5ggHXV9lChoBmgJaA9DCD25pkDmmm9AlIaUUpRoFUvjaBZHQLCqTd/8VHp1fZQoaAZoCWgPQwixGktYG49wQJSGlFKUaBVL2mgWR0Cwqmsny/bkdX2UKGgGaAloD0MIqfdUTvs2bkCUhpRSlGgVS9RoFkdAsKptLJ0W/XV9lChoBmgJaA9DCFLTLqbZWXBAlIaUUpRoFUvjaBZHQLCqie+VTrF1fZQoaAZoCWgPQwgEG9e/6xZxQJSGlFKUaBVL/GgWR0CwqpgvxpcpdX2UKGgGaAloD0MIZ7rXSX0Pb0CUhpRSlGgVS99oFkdAsKqmmKqGUXV9lChoBmgJaA9DCKpkAKiigHBAlIaUUpRoFUvqaBZHQLCqqrlNlAh1fZQoaAZoCWgPQwh7wDxkChFwQJSGlFKUaBVL5WgWR0CwqrCBGx2TdX2UKGgGaAloD0MITFMEOP3uckCUhpRSlGgVS9RoFkdAsKrFw++ueXV9lChoBmgJaA9DCJ6ymq5nW3FAlIaUUpRoFUvraBZHQLCq4IClrM11fZQoaAZoCWgPQwhhxD4BVFVwQJSGlFKUaBVL5mgWR0CwqukZNwirdX2UKGgGaAloD0MIG9XpQFZGb0CUhpRSlGgVS9hoFkdAsKsTYQJ5V3V9lChoBmgJaA9DCL5sO22NkXBAlIaUUpRoFUvNaBZHQLCrJc7Qswt1fZQoaAZoCWgPQwitFthjIuhuQJSGlFKUaBVL3mgWR0Cwqz57ojfOdX2UKGgGaAloD0MIIsFUMysEc0CUhpRSlGgVS+BoFkdAsKtQOx0MgHV9lChoBmgJaA9DCEgWMIGbWHJAlIaUUpRoFUvJaBZHQLCrgfU4JeF1fZQoaAZoCWgPQwigVPt0fNtwQJSGlFKUaBVL8GgWR0Cwq4yBoVVQdX2UKGgGaAloD0MItLCnHT42cECUhpRSlGgVS+1oFkdAsKuYmlZX+3V9lChoBmgJaA9DCEFjJlFv3XBAlIaUUpRoFUvOaBZHQLCrokhzNll1fZQoaAZoCWgPQwhl48EWezdzQJSGlFKUaBVL42gWR0Cwq6dJ4B3idX2UKGgGaAloD0MIvw6cM6IWb0CUhpRSlGgVS91oFkdAsKvC4c3l0nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 984, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03940ec64c0f4228dbfb436c0b79b8383680951fc9b92b8de953ed0ed25cd0bc
|
3 |
+
size 147289
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f23f4509670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23f4509700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23f4509790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23f4509820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f23f45098b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f23f4509940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23f45099d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23f4509a60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f23f4509af0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23f4509b80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23f4509c10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23f4509ca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f23f4503780>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
27 |
+
"dtype": "float32",
|
28 |
+
"shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
40 |
+
"n": 4,
|
41 |
+
"shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 2015232,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1675300433058865312,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq9OLzca0S8XBypPctPRr1Bh6u9so6ZvgAAgD8AAIA/s/W0PaNrKD3T6s690gCEvpXpVr3CVZW9AAAAAAAAAAAzy9a9wWESPznppLyC6NO+1+nEvWbYbj0AAAAAAAAAANqckr1cSx68449WPnafJ71y+Us4/etAPQAAgD8AAIA/syU3vbjAnbvdqhU8q4mOPIfk5bz213I9AACAPwAAgD+aT/G8vji3PxqRzb3qhom+zqWdu4zAvb0AAAAAAAAAAIAd9D18Xvk+6nyEvhNJ1L4SipS9u4DduwAAAAAAAAAAQNZ3vmL9hz/KbuK+USkpvyaTtr5+78K9AAAAAAAAAAAaH5W99lw9uufeF7RVnTEu/IZHu2h9pzMAAAAAAACAPwCwH7vH/bM/AGX8vWDo8b0Hejc75lTiPAAAAAAAAAAAZsKPPI8CEbo62oy8xCEtsxxwM7uDzmozAACAPwAAgD/gdji+sFI6P3QaDr4XLhu/kZmevhtizzwAAAAAAAAAAIAzjz1LlS8/KUMIvQ5hvL6FSYM95AewvQAAAAAAAAAAZjKiu/lTQj7iIKM9LatyvsZ+iDwDyh66AAAAAAAAAACtky0+jg+OP+U+CD/raO++rFZZPpWtlz4AAAAAAAAAAHO6jb0OeLo/y39Bvqwmu76zoUu9vhjbvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.007616000000000067,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDmd+NccScECUhpRSlIwBbJRL4owBdJRHQLCanT9KmKt1fZQoaAZoCWgPQwjBb0OMl6pyQJSGlFKUaBVL62gWR0CwmqHljmSydX2UKGgGaAloD0MIn3O366VBckCUhpRSlGgVS8loFkdAsJqudc0Lt3V9lChoBmgJaA9DCFc/NslP9XBAlIaUUpRoFUv5aBZHQLCayJJXhfl1fZQoaAZoCWgPQwjScqCH2sNSQJSGlFKUaBVLxGgWR0CwmvPCEYfodX2UKGgGaAloD0MINq/qrJbCcECUhpRSlGgVS81oFkdAsJr94/u9e3V9lChoBmgJaA9DCLrb9dKUB29AlIaUUpRoFUvxaBZHQLCbC5U96kZ1fZQoaAZoCWgPQwjxoURL3lNyQJSGlFKUaBVL5GgWR0CwmxRceKbbdX2UKGgGaAloD0MI9UpZhrhOcUCUhpRSlGgVS9hoFkdAsJsmgM+eOHV9lChoBmgJaA9DCEm70cd8RnFAlIaUUpRoFUvNaBZHQLCbLauwHJN1fZQoaAZoCWgPQwhUrYVZqBdyQJSGlFKUaBVLyGgWR0Cwmzd2LYPHdX2UKGgGaAloD0MInPnVHKDgc0CUhpRSlGgVS9RoFkdAsJtCWldka3V9lChoBmgJaA9DCPQWD++5525AlIaUUpRoFUvWaBZHQLCbdTMqz7d1fZQoaAZoCWgPQwiufmySnylxQJSGlFKUaBVLyWgWR0Cwm65EUj9odX2UKGgGaAloD0MIVisTfqmmckCUhpRSlGgVS+FoFkdAsJvDYf4h2XV9lChoBmgJaA9DCH0h5Ly/QXNAlIaUUpRoFUviaBZHQLCb1DaoMrp1fZQoaAZoCWgPQwhioGtfwLduQJSGlFKUaBVLy2gWR0Cwm9/nGKhtdX2UKGgGaAloD0MIYk1lUdhsckCUhpRSlGgVS+1oFkdAsJvfNu+AVnV9lChoBmgJaA9DCAvtnGZBR3BAlIaUUpRoFUvhaBZHQLCb4X0oSct1fZQoaAZoCWgPQwhlijkI+sVzQJSGlFKUaBVLy2gWR0CwnCeE/SpjdX2UKGgGaAloD0MIz6Pi/86ycECUhpRSlGgVS95oFkdAsJwreLvTgHV9lChoBmgJaA9DCDZaDvTQQXFAlIaUUpRoFUvZaBZHQLCcLk56t1Z1fZQoaAZoCWgPQwhDPBIvTw1yQJSGlFKUaBVLy2gWR0CwnESuMdcTdX2UKGgGaAloD0MIz4O7s/ZdbkCUhpRSlGgVS9toFkdAsJxIIQe3hHV9lChoBmgJaA9DCKA4gH7fHnBAlIaUUpRoFUvIaBZHQLCcU212JSB1fZQoaAZoCWgPQwgs8BXd+uxxQJSGlFKUaBVL1GgWR0CwnFhSgoPTdX2UKGgGaAloD0MIQDBHj9+zckCUhpRSlGgVS8NoFkdAsJyJ8uzyBnV9lChoBmgJaA9DCJ7TLNBuqXJAlIaUUpRoFUvzaBZHQLCclfO2RaJ1fZQoaAZoCWgPQwiEK6BQD+RwQJSGlFKUaBVL52gWR0CwpgsDbJwLdX2UKGgGaAloD0MILEme6zt+c0CUhpRSlGgVS8poFkdAsKYTZezD43V9lChoBmgJaA9DCE1p/S2Bzm9AlIaUUpRoFUvMaBZHQLCmGTs6aLJ1fZQoaAZoCWgPQwhnuAGfXxVyQJSGlFKUaBVL5mgWR0CwpiOtr9EUdX2UKGgGaAloD0MI7pQO1n+ocECUhpRSlGgVS9ZoFkdAsKYpX2dupHV9lChoBmgJaA9DCCOD3EXYa3FAlIaUUpRoFUvGaBZHQLCmWGhmGud1fZQoaAZoCWgPQwhpUZ/kzqBwQJSGlFKUaBVNAAFoFkdAsKZdHskY43V9lChoBmgJaA9DCIi6D0BqvHBAlIaUUpRoFUvWaBZHQLCmdyprDZV1fZQoaAZoCWgPQwjuPzIdOipwQJSGlFKUaBVL3WgWR0Cwpn9diUgTdX2UKGgGaAloD0MIjlcgepIWckCUhpRSlGgVS8xoFkdAsKaTz06HTXV9lChoBmgJaA9DCIV80LPZvXBAlIaUUpRoFUvNaBZHQLCmmqh11W91fZQoaAZoCWgPQwjIsmDij2ZyQJSGlFKUaBVL8WgWR0CwprzgqEvkdX2UKGgGaAloD0MIVdl3RfDKcUCUhpRSlGgVS/VoFkdAsKbGOU+s5nV9lChoBmgJaA9DCJOoF3yapW1AlIaUUpRoFUviaBZHQLCm9JbdJrd1fZQoaAZoCWgPQwiBzM6i9/dxQJSGlFKUaBVL4WgWR0Cwpv+2qkuZdX2UKGgGaAloD0MIDECjdCkOckCUhpRSlGgVS9RoFkdAsKdUu3+db3V9lChoBmgJaA9DCEkrvqHwpW9AlIaUUpRoFUvhaBZHQLCndRTCLuR1fZQoaAZoCWgPQwjGpwAYD5NzQJSGlFKUaBVL22gWR0Cwp3oldC3PdX2UKGgGaAloD0MIguFcwwzqcECUhpRSlGgVS+hoFkdAsKeGmIj4YnV9lChoBmgJaA9DCAcJUb4go2xAlIaUUpRoFUvhaBZHQLCnigVGkN51fZQoaAZoCWgPQwi4c2Gkl6xwQJSGlFKUaBVL2mgWR0Cwp7SN0eU7dX2UKGgGaAloD0MI1Jl7SLiDckCUhpRSlGgVS9ZoFkdAsKfJOwgTy3V9lChoBmgJaA9DCPCLS1Xa43FAlIaUUpRoFUvYaBZHQLCn1CAc1fp1fZQoaAZoCWgPQwjBrFCkO0dxQJSGlFKUaBVNAwFoFkdAsKfvW1+iJ3V9lChoBmgJaA9DCFZFuMmo53JAlIaUUpRoFUviaBZHQLCn9fseGPB1fZQoaAZoCWgPQwgzMV2IVeFxQJSGlFKUaBVL0mgWR0CwqASExqO+dX2UKGgGaAloD0MIQZscPukEcUCUhpRSlGgVS8xoFkdAsKgFUDMeOnV9lChoBmgJaA9DCAhb7PaZu3BAlIaUUpRoFU0BAWgWR0CwqCic0+C9dX2UKGgGaAloD0MIxqcAGE+gcECUhpRSlGgVS+1oFkdAsKhon8baRXV9lChoBmgJaA9DCID0TZqGRnFAlIaUUpRoFUvmaBZHQLCoacI7eVN1fZQoaAZoCWgPQwgxRE5fj3pwQJSGlFKUaBVLymgWR0CwqLJ71Iy1dX2UKGgGaAloD0MIABx79hwBckCUhpRSlGgVS/FoFkdAsKjQiPhhpnV9lChoBmgJaA9DCJwZ/Wg4Q21AlIaUUpRoFUvlaBZHQLCo7UAksz51fZQoaAZoCWgPQwga3UHsDFFwQJSGlFKUaBVL52gWR0CwqPQflp49dX2UKGgGaAloD0MI2PFfIIiZckCUhpRSlGgVS/NoFkdAsKjzZ5AyEnV9lChoBmgJaA9DCN8WLNUF4G5AlIaUUpRoFUvgaBZHQLCpExWDHwR1fZQoaAZoCWgPQwgHJGHfjrVwQJSGlFKUaBVL4mgWR0CwqTkFjd56dX2UKGgGaAloD0MIoBfuXNh6cUCUhpRSlGgVS9doFkdAsKlD9P1tf3V9lChoBmgJaA9DCH2wjA2dUnFAlIaUUpRoFUvaaBZHQLCpUHYHxBp1fZQoaAZoCWgPQwjuYMQ+gVhgQJSGlFKUaBVN6ANoFkdAsKlTblA/s3V9lChoBmgJaA9DCFmK5CuB0HBAlIaUUpRoFUvhaBZHQLCpZ/dIoVp1fZQoaAZoCWgPQwgO2UC62JNzQJSGlFKUaBVNEAFoFkdAsKlyoGY8dXV9lChoBmgJaA9DCAUx0LWvj3BAlIaUUpRoFUvqaBZHQLCpdKDCgsd1fZQoaAZoCWgPQwgDtRg8jOpxQJSGlFKUaBVL8mgWR0CwqZ28yvcKdX2UKGgGaAloD0MI0NVW7O9OcECUhpRSlGgVS8poFkdAsKmfV3EAHXV9lChoBmgJaA9DCCEgX0KFm3BAlIaUUpRoFUvVaBZHQLCpq48lolF1fZQoaAZoCWgPQwhH5/wUR15wQJSGlFKUaBVL1mgWR0Cwqea5kK/mdX2UKGgGaAloD0MI3uUivlO0cECUhpRSlGgVS8hoFkdAsKoIm1IAfnV9lChoBmgJaA9DCFDEIoYdR3NAlIaUUpRoFUvJaBZHQLCqCU8V58l1fZQoaAZoCWgPQwijrN9MTPVvQJSGlFKUaBVL52gWR0CwqheXeFcqdX2UKGgGaAloD0MIf9+/eTH+ckCUhpRSlGgVS/BoFkdAsKo7o5ggHXV9lChoBmgJaA9DCD25pkDmmm9AlIaUUpRoFUvjaBZHQLCqTd/8VHp1fZQoaAZoCWgPQwixGktYG49wQJSGlFKUaBVL2mgWR0Cwqmsny/bkdX2UKGgGaAloD0MIqfdUTvs2bkCUhpRSlGgVS9RoFkdAsKptLJ0W/XV9lChoBmgJaA9DCFLTLqbZWXBAlIaUUpRoFUvjaBZHQLCqie+VTrF1fZQoaAZoCWgPQwgEG9e/6xZxQJSGlFKUaBVL/GgWR0CwqpgvxpcpdX2UKGgGaAloD0MIZ7rXSX0Pb0CUhpRSlGgVS99oFkdAsKqmmKqGUXV9lChoBmgJaA9DCKpkAKiigHBAlIaUUpRoFUvqaBZHQLCqqrlNlAh1fZQoaAZoCWgPQwh7wDxkChFwQJSGlFKUaBVL5WgWR0CwqrCBGx2TdX2UKGgGaAloD0MITFMEOP3uckCUhpRSlGgVS9RoFkdAsKrFw++ueXV9lChoBmgJaA9DCJ6ymq5nW3FAlIaUUpRoFUvraBZHQLCq4IClrM11fZQoaAZoCWgPQwhhxD4BVFVwQJSGlFKUaBVL5mgWR0CwqukZNwirdX2UKGgGaAloD0MIG9XpQFZGb0CUhpRSlGgVS9hoFkdAsKsTYQJ5V3V9lChoBmgJaA9DCL5sO22NkXBAlIaUUpRoFUvNaBZHQLCrJc7Qswt1fZQoaAZoCWgPQwitFthjIuhuQJSGlFKUaBVL3mgWR0Cwqz57ojfOdX2UKGgGaAloD0MIIsFUMysEc0CUhpRSlGgVS+BoFkdAsKtQOx0MgHV9lChoBmgJaA9DCEgWMIGbWHJAlIaUUpRoFUvJaBZHQLCrgfU4JeF1fZQoaAZoCWgPQwigVPt0fNtwQJSGlFKUaBVL8GgWR0Cwq4yBoVVQdX2UKGgGaAloD0MItLCnHT42cECUhpRSlGgVS+1oFkdAsKuYmlZX+3V9lChoBmgJaA9DCEFjJlFv3XBAlIaUUpRoFUvOaBZHQLCrokhzNll1fZQoaAZoCWgPQwhl48EWezdzQJSGlFKUaBVL42gWR0Cwq6dJ4B3idX2UKGgGaAloD0MIvw6cM6IWb0CUhpRSlGgVS91oFkdAsKvC4c3l0nVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 984,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 8,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6dd9b425eecd3d2443692838306fbdacf5b8cf519e40ae78c0b4321ecb127c8
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fc01647e7913e2429fb242ad53cbb8fb723ca27314c343943baf8d6a0862aae
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.17.3
|
replay.mp4
ADDED
Binary file (236 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 288.1654016555291, "std_reward": 23.455590708202504, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-02T02:01:47.637356"}
|