xlmr_nli_tuned_private
This model is a fine-tuned version of eryawww/xlmr_base_nlit on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6844
- Accuracy: 0.8433
- F1: 0.8435
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 200
- eval_batch_size: 200
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 0.4381 | 1.0 | 408 | 0.4088 | 0.8430 | 0.8430 |
| 0.3566 | 2.0 | 816 | 0.4136 | 0.8444 | 0.8445 |
| 0.2708 | 3.0 | 1224 | 0.4617 | 0.8429 | 0.8431 |
| 0.2223 | 4.0 | 1632 | 0.4981 | 0.8407 | 0.8409 |
| 0.1757 | 5.0 | 2040 | 0.5354 | 0.8420 | 0.8422 |
| 0.145 | 6.0 | 2448 | 0.5947 | 0.8419 | 0.8421 |
| 0.1231 | 7.0 | 2856 | 0.6268 | 0.8413 | 0.8414 |
| 0.0917 | 8.0 | 3264 | 0.6813 | 0.8420 | 0.8422 |
| 0.0911 | 9.0 | 3672 | 0.6810 | 0.8422 | 0.8424 |
| 0.0884 | 10.0 | 4080 | 0.6844 | 0.8433 | 0.8435 |
Framework versions
- Transformers 4.45.0
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.20.3
- Downloads last month
- -
Model tree for eryawww/indonli-deberta-v3-large
Base model
eryawww/xlmr_base_nlit