update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
- arabic
|
6 |
+
- ar
|
7 |
+
- mt5
|
8 |
+
- Abstractive Summarization
|
9 |
+
- generated_from_trainer
|
10 |
+
datasets:
|
11 |
+
- xlsum
|
12 |
+
model-index:
|
13 |
+
- name: mt5-base-arabic
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# mt5-base-arabic
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the xlsum dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 3.2742
|
25 |
+
- Rouge-1: 22.86
|
26 |
+
- Rouge-2: 10.31
|
27 |
+
- Rouge-l: 20.85
|
28 |
+
- Gen Len: 19.0
|
29 |
+
- Bertscore: 71.52
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 0.0005
|
49 |
+
- train_batch_size: 4
|
50 |
+
- eval_batch_size: 4
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 8
|
53 |
+
- total_train_batch_size: 32
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: linear
|
56 |
+
- num_epochs: 5
|
57 |
+
- label_smoothing_factor: 0.1
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|
62 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
|
63 |
+
| 4.2331 | 1.0 | 1172 | 3.5051 | 18.54 | 6.63 | 16.77 | 19.0 | 70.28 |
|
64 |
+
| 3.7075 | 2.0 | 2344 | 3.3737 | 19.99 | 7.94 | 18.19 | 19.0 | 70.79 |
|
65 |
+
| 3.5132 | 3.0 | 3516 | 3.3171 | 20.76 | 8.57 | 18.96 | 19.0 | 70.95 |
|
66 |
+
| 3.3859 | 4.0 | 4688 | 3.2811 | 21.49 | 8.99 | 19.51 | 19.0 | 71.19 |
|
67 |
+
| 3.3012 | 5.0 | 5860 | 3.2742 | 21.79 | 9.18 | 19.77 | 19.0 | 71.25 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.18.0
|
73 |
+
- Pytorch 1.11.0+cu113
|
74 |
+
- Datasets 2.1.0
|
75 |
+
- Tokenizers 0.12.1
|