eslamxm commited on
Commit
c3a3fb4
1 Parent(s): 4e9daa5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - summarization
5
+ - arabic
6
+ - ar
7
+ - en
8
+ - mt5
9
+ - Abstractive Summarization
10
+ - generated_from_trainer
11
+ datasets:
12
+ - xlsum
13
+ model-index:
14
+ - name: mt5-base-finetuned-english-finetuned-english-arabic
15
+ results: []
16
+ ---
17
+
18
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
19
+ should probably proofread and complete it, then remove this comment. -->
20
+
21
+ # mt5-base-finetuned-english-finetuned-english-arabic
22
+
23
+ This model is a fine-tuned version of [eslamxm/mt5-base-finetuned-english](https://huggingface.co/eslamxm/mt5-base-finetuned-english) on the xlsum dataset.
24
+ It achieves the following results on the evaluation set:
25
+ - Loss: 3.4788
26
+ - Rouge-1: 22.55
27
+ - Rouge-2: 9.84
28
+ - Rouge-l: 20.5
29
+ - Gen Len: 19.0
30
+ - Bertscore: 71.39
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 0.0005
50
+ - train_batch_size: 4
51
+ - eval_batch_size: 4
52
+ - seed: 42
53
+ - gradient_accumulation_steps: 8
54
+ - total_train_batch_size: 32
55
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
+ - lr_scheduler_type: linear
57
+ - num_epochs: 5
58
+ - label_smoothing_factor: 0.1
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
63
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
64
+ | 4.999 | 1.0 | 1172 | 3.9343 | 17.67 | 5.93 | 15.86 | 19.0 | 69.69 |
65
+ | 4.008 | 2.0 | 2344 | 3.6655 | 19.48 | 7.67 | 17.67 | 19.0 | 70.49 |
66
+ | 3.7463 | 3.0 | 3516 | 3.5503 | 20.47 | 8.24 | 18.6 | 19.0 | 70.86 |
67
+ | 3.5924 | 4.0 | 4688 | 3.4942 | 20.95 | 8.45 | 19.05 | 19.0 | 71.0 |
68
+ | 3.4979 | 5.0 | 5860 | 3.4788 | 21.34 | 8.75 | 19.39 | 19.0 | 71.11 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.19.0
74
+ - Pytorch 1.11.0+cu113
75
+ - Datasets 2.2.1
76
+ - Tokenizers 0.12.1