ethanbradley
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- ethanbradley/synfintabs
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- microsoft/layoutlm-base-uncased
|
9 |
+
---
|
10 |
+
|
11 |
+
# FinTabQA: Financial Table Question-Answering
|
12 |
+
|
13 |
+
A model for financial table question-answering using the [LayoutLM](https://huggingface.co/microsoft/layoutlm-base-uncased) architecture.
|
14 |
+
|
15 |
+
## Quick start
|
16 |
+
|
17 |
+
To get started with FinTabQA, load it, and the tokenizer, like you would any other Hugging Face Transformer model.
|
18 |
+
|
19 |
+
```python3
|
20 |
+
from transformers import LayoutLMForQuestionAnswering, LayoutLMTokenizer
|
21 |
+
|
22 |
+
model = LayoutLMForQuestionAnswering.from_pretrained("ethanbradley/fintabqa")
|
23 |
+
tokenizer = LayoutLMTokenizer.from_pretrained(
|
24 |
+
"microsoft/layoutlm-base-uncased")
|
25 |
+
```
|
26 |
+
|
27 |
+
## Citation
|
28 |
+
|
29 |
+
If you use this model, please cite both the article using the citation below and the model itself.
|
30 |
+
|
31 |
+
```bib
|
32 |
+
@misc{bradley2024synfintabs,
|
33 |
+
title = {Syn{F}in{T}abs: A Dataset of Synthetic Financial Tables for Information and Table Extraction},
|
34 |
+
author = {Bradley, Ethan and Roman, Muhammad and Rafferty, Karen and Devereux, Barry},
|
35 |
+
year = {2024},
|
36 |
+
eprint = {2412.04262},
|
37 |
+
archivePrefix = {arXiv},
|
38 |
+
primaryClass = {cs.LG},
|
39 |
+
url = {https://arxiv.org/abs/2412.04262}
|
40 |
+
}
|
41 |
+
```
|