ethanbradley
commited on
Commit
•
b92ba3f
1
Parent(s):
2f5ed09
Include minimum working example
Browse files
README.md
CHANGED
@@ -16,14 +16,73 @@ A model for financial table question-answering using the [LayoutLM](https://hugg
|
|
16 |
|
17 |
## Quick start
|
18 |
|
19 |
-
To get started with FinTabQA, load it, and
|
20 |
|
21 |
```python3
|
22 |
-
from
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
```
|
28 |
|
29 |
## Citation
|
|
|
16 |
|
17 |
## Quick start
|
18 |
|
19 |
+
To get started with FinTabQA, load it, and a fast tokenizer, like you would any other Hugging Face Transformer model and tokenizer. Below is a minimum working example using the [SynFinTabs](https://huggingface.co/datasets/ethanbradley/synfintabs) dataset.
|
20 |
|
21 |
```python3
|
22 |
+
>>> from typing import List, Tuple
|
23 |
+
>>> from datasets import load_dataset
|
24 |
+
>>> from transformers import LayoutLMForQuestionAnswering, LayoutLMTokenizerFast
|
25 |
+
>>> import torch
|
26 |
+
>>>
|
27 |
+
>>> synfintabs_dataset = load_dataset("ethanbradley/synfintabs")
|
28 |
+
>>> model = LayoutLMForQuestionAnswering.from_pretrained("ethanbradley/fintabqa")
|
29 |
+
>>> tokenizer = LayoutLMTokenizerFast.from_pretrained(
|
30 |
+
... "microsoft/layoutlm-base-uncased")
|
31 |
+
>>>
|
32 |
+
>>> def normalise_boxes(
|
33 |
+
... boxes: List[List[int]],
|
34 |
+
... old_image_size: Tuple[int, int],
|
35 |
+
... new_image_size: Tuple[int, int]) -> List[List[int]]:
|
36 |
+
... old_im_w, old_im_h = old_image_size
|
37 |
+
... new_im_w, new_im_h = new_image_size
|
38 |
+
...
|
39 |
+
... return [[
|
40 |
+
... max(min(int(x1 / old_im_w * new_im_w), new_im_w), 0),
|
41 |
+
... max(min(int(y1 / old_im_h * new_im_h), new_im_h), 0),
|
42 |
+
... max(min(int(x2 / old_im_w * new_im_w), new_im_w), 0),
|
43 |
+
... max(min(int(y2 / old_im_h * new_im_h), new_im_h), 0)
|
44 |
+
... ] for (x1, y1, x2, y2) in boxes]
|
45 |
+
>>>
|
46 |
+
>>> item = synfintabs_dataset['test'][0]
|
47 |
+
>>> question_dict = next(question for question in item['questions']
|
48 |
+
... if question['id'] == item['question_id'])
|
49 |
+
>>> encoding = tokenizer(
|
50 |
+
... question_dict['question'].split(),
|
51 |
+
... item['ocr_results']['words'],
|
52 |
+
... max_length=512,
|
53 |
+
... padding="max_length",
|
54 |
+
... truncation="only_second",
|
55 |
+
... is_split_into_words=True,
|
56 |
+
... return_token_type_ids=True,
|
57 |
+
... return_tensors="pt")
|
58 |
+
>>>
|
59 |
+
>>> word_boxes = normalise_boxes(
|
60 |
+
... item['ocr_results']['bboxes'],
|
61 |
+
... item['image'].crop(item['bbox']).size,
|
62 |
+
... (1000, 1000))
|
63 |
+
>>> token_boxes = []
|
64 |
+
>>>
|
65 |
+
>>> for i, s, w in zip(
|
66 |
+
... encoding['input_ids'][0],
|
67 |
+
... encoding.sequence_ids(0),
|
68 |
+
... encoding.word_ids(0)):
|
69 |
+
... if s == 1:
|
70 |
+
... token_boxes.append(word_boxes[w])
|
71 |
+
... elif i == tokenizer.sep_token_id:
|
72 |
+
... token_boxes.append([1000] * 4)
|
73 |
+
... else:
|
74 |
+
... token_boxes.append([0] * 4)
|
75 |
+
>>>
|
76 |
+
>>> encoding['bbox'] = torch.tensor([token_boxes])
|
77 |
+
>>> outputs = model(**encoding)
|
78 |
+
>>> start = encoding.word_ids(0)[outputs['start_logits'].argmax(-1)]
|
79 |
+
>>> end = encoding.word_ids(0)[outputs['end_logits'].argmax(-1)]
|
80 |
+
>>>
|
81 |
+
>>> print(f"Target: {question_dict['answer']}")
|
82 |
+
Target: 6,980
|
83 |
+
>>>
|
84 |
+
>>> print(f"Prediction: {' '.join(item['ocr_results']['words'][start : end])}")
|
85 |
+
Prediction: 6,980
|
86 |
```
|
87 |
|
88 |
## Citation
|