--- library_name: transformers pipeline_tag: table-question-answering license: mit datasets: - ethanbradley/synfintabs language: - en base_model: - microsoft/layoutlm-base-uncased --- # FinTabQA: Financial Table Question-Answering A model for financial table question-answering using the [LayoutLM](https://huggingface.co/microsoft/layoutlm-base-uncased) architecture. ## Quick start To get started with FinTabQA, load it, and the tokenizer, like you would any other Hugging Face Transformer model. ```python3 from transformers import LayoutLMForQuestionAnswering, LayoutLMTokenizer model = LayoutLMForQuestionAnswering.from_pretrained("ethanbradley/fintabqa") tokenizer = LayoutLMTokenizer.from_pretrained( "microsoft/layoutlm-base-uncased") ``` ## Citation If you use this model, please cite both the article using the citation below and the model itself. ```bib @misc{bradley2024synfintabs, title = {Syn{F}in{T}abs: A Dataset of Synthetic Financial Tables for Information and Table Extraction}, author = {Bradley, Ethan and Roman, Muhammad and Rafferty, Karen and Devereux, Barry}, year = {2024}, eprint = {2412.04262}, archivePrefix = {arXiv}, primaryClass = {cs.LG}, url = {https://arxiv.org/abs/2412.04262} } ```