--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: med-lora/Llama2-Medtext-txt-lora-epochs-2-lr-0001 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: meta-llama/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: utrgvseniorproject/medtext-txt type: completion dataset_prepared_path: /home/ethensanchez01/med-llm/last_run_prepared val_set_size: 0.05 output_dir: ./med-lora/Llama2-Medtext-txt-lora-epochs-2-lr-0001 sequence_len: 4096 sample_packing: true pad_to_sequence_len: true wandb_project: Llama2-Medtext-Lora wandb_entity: utrgvmedai wandb_watch: wandb_name: Llama2-Medtext-txt-lora-epochs-2-lr-0001 wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0001 train_on_inputs: True # make sure you have this on True group_by_length: false bf16: true fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true flash_attn_cross_entropy: false flash_attn_rms_norm: true flash_attn_fuse_qkv: false flash_attn_fuse_mlp: true warmup_steps: 100 evals_per_epoch: 4 eval_table_size: eval_sample_packing: save_steps: 800 debug: deepspeed: /home/ethensanchez01/src/axolotl/deepspeed_configs/zero2.json weight_decay: 0.001 fsdp: fsdp_config: special_tokens: ```

# med-lora/Llama2-Medtext-txt-lora-epochs-2-lr-0001 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.532 | 0.19 | 1 | 1.4208 | | 1.5994 | 0.38 | 2 | 1.4210 | | 1.6281 | 0.76 | 4 | 1.4198 | | 1.6221 | 1.05 | 6 | 1.4168 | | 1.5891 | 1.43 | 8 | 1.4136 | | 1.582 | 1.81 | 10 | 1.4128 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.17.0 - Tokenizers 0.15.0