Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +15 -15
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.54 +/- 0.79
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b3f98e66a57b1cc041dbede653d10d14eb6f8c125cfdebc40c24c472c2cefbf
|
3 |
+
size 108072
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,24 +41,24 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3c145a9310>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f3c14621b70>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 2000000,
|
45 |
+
"_total_timesteps": 2000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1677134349898625985,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAMBHDPsOczzuAjQ0/MBHDPsOczzuAjQ0/MBHDPsOczzuAjQ0/MBHDPsOczzuAjQ0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5BqXPy+RZ783fnK+EPyjvwOJ/b2yYoc/3Sz/PmoqEb9AuNS/XuwQP4DZ17+pNwK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAwEcM+w5zPO4CNDT81fNY50A5ROkQfwzkwEcM+w5zPO4CNDT81fNY50A5ROkQfwzkwEcM+w5zPO4CNDT81fNY50A5ROkQfwzkwEcM+w5zPO4CNDT81fNY50A5ROkQfwzmUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.3809905 0.00633583 0.55294037]\n [0.3809905 0.00633583 0.55294037]\n [0.3809905 0.00633583 0.55294037]\n [0.3809905 0.00633583 0.55294037]]",
|
60 |
+
"desired_goal": "[[ 1.1805081 -0.9045591 -0.2368096 ]\n [-1.2811298 -0.12379649 1.0576994 ]\n [ 0.49838915 -0.56705344 -1.6618729 ]\n [ 0.5661067 -1.6863251 -0.5086618 ]]",
|
61 |
+
"observation": "[[3.8099051e-01 6.3358261e-03 5.5294037e-01 4.0909802e-04 7.9749245e-04\n 3.7216593e-04]\n [3.8099051e-01 6.3358261e-03 5.5294037e-01 4.0909802e-04 7.9749245e-04\n 3.7216593e-04]\n [3.8099051e-01 6.3358261e-03 5.5294037e-01 4.0909802e-04 7.9749245e-04\n 3.7216593e-04]\n [3.8099051e-01 6.3358261e-03 5.5294037e-01 4.0909802e-04 7.9749245e-04\n 3.7216593e-04]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfMp9vId47j3OZP88Yjm4PUx0kL1o1yY+mtEQvqRZlj2SoB09uakyPd5PAT63U40+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.01549017 0.11644083 0.031176 ]\n [ 0.0899532 -0.07053432 0.16293108]\n [-0.14142457 0.07341316 0.03848321]\n [ 0.04361889 0.12628123 0.27602932]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBfnZyHXT+L+UhpRSlIwBbJRLMowBdJRHQLci/WMCLdh1fZQoaAZoCWgPQwgonN1aJkP+v5SGlFKUaBVLMmgWR0C3Is1hsqJ/dX2UKGgGaAloD0MIBvGBHf8lAcCUhpRSlGgVSzJoFkdAtyKFHww0wnV9lChoBmgJaA9DCNwtyQG72va/lIaUUpRoFUsyaBZHQLciRgGKQ7t1fZQoaAZoCWgPQwj7HvXXK+wCwJSGlFKUaBVLMmgWR0C3I36Oo5xSdX2UKGgGaAloD0MIwha7fVaZ9r+UhpRSlGgVSzJoFkdAtyNOvHLidnV9lChoBmgJaA9DCDNslPWbCfa/lIaUUpRoFUsyaBZHQLcjBn1Fpfx1fZQoaAZoCWgPQwjohqbs9KMBwJSGlFKUaBVLMmgWR0C3Isdy1eBydX2UKGgGaAloD0MIUb8LW7NVAsCUhpRSlGgVSzJoFkdAtyQA12q1gHV9lChoBmgJaA9DCO2b+6vHnQnAlIaUUpRoFUsyaBZHQLcj0RtP5591fZQoaAZoCWgPQwg+6USCqSb7v5SGlFKUaBVLMmgWR0C3I4jBMzuXdX2UKGgGaAloD0MIptHkYgyMAMCUhpRSlGgVSzJoFkdAtyNJlBhQWXV9lChoBmgJaA9DCDI4Sl6d4/S/lIaUUpRoFUsyaBZHQLckfhsImgJ1fZQoaAZoCWgPQwjsiEM2kM4EwJSGlFKUaBVLMmgWR0C3JE4gRsdldX2UKGgGaAloD0MIF5rrNNIyA8CUhpRSlGgVSzJoFkdAtyQFvQ4S6HV9lChoBmgJaA9DCFzlCYSdYgDAlIaUUpRoFUsyaBZHQLcjxoqkM1F1fZQoaAZoCWgPQwgzpmCNsykHwJSGlFKUaBVLMmgWR0C3JSr0OEuhdX2UKGgGaAloD0MImkARixj2AMCUhpRSlGgVSzJoFkdAtyT7HJcPfHV9lChoBmgJaA9DCElL5e0Ip/O/lIaUUpRoFUsyaBZHQLcksu+AVfx1fZQoaAZoCWgPQwguymyQSQbyv5SGlFKUaBVLMmgWR0C3JHRY/3WXdX2UKGgGaAloD0MIG7tE9dbAA8CUhpRSlGgVSzJoFkdAtyXxYnv2G3V9lChoBmgJaA9DCMprJXSXxPi/lIaUUpRoFUsyaBZHQLclwaCcwxp1fZQoaAZoCWgPQwgIPgYrTvUEwJSGlFKUaBVLMmgWR0C3JXnSF49pdX2UKGgGaAloD0MIK2wGuCBb9r+UhpRSlGgVSzJoFkdAtyU65J9RaXV9lChoBmgJaA9DCNFXkGYsWvy/lIaUUpRoFUsyaBZHQLcms9C/oJR1fZQoaAZoCWgPQwgkmGpmLUX+v5SGlFKUaBVLMmgWR0C3JoQ6QvHtdX2UKGgGaAloD0MIbqKW5lboAsCUhpRSlGgVSzJoFkdAtyY8IBzV+nV9lChoBmgJaA9DCA+aXfdWpPi/lIaUUpRoFUsyaBZHQLcl/SS/0ul1fZQoaAZoCWgPQwjl8h/Sb5/4v5SGlFKUaBVLMmgWR0C3J4vJA+pwdX2UKGgGaAloD0MITSzwFd16BcCUhpRSlGgVSzJoFkdAtydcYFaB7XV9lChoBmgJaA9DCE7soX2sIAPAlIaUUpRoFUsyaBZHQLcnFIfr8ix1fZQoaAZoCWgPQwi+vtalRogJwJSGlFKUaBVLMmgWR0C3JtWfGuLadX2UKGgGaAloD0MImx4UlKLV97+UhpRSlGgVSzJoFkdAtyhrbVSXMXV9lChoBmgJaA9DCIl9AihG1vi/lIaUUpRoFUsyaBZHQLcoO6Y3Ns51fZQoaAZoCWgPQwh1AwXeyWcAwJSGlFKUaBVLMmgWR0C3J/PVI7NjdX2UKGgGaAloD0MIdsO2RZnNBsCUhpRSlGgVSzJoFkdAtye1Mh5gPXV9lChoBmgJaA9DCOdvQiECjvW/lIaUUpRoFUsyaBZHQLcpSODJ2dN1fZQoaAZoCWgPQwjEzD6PUT4GwJSGlFKUaBVLMmgWR0C3KRlbqyGBdX2UKGgGaAloD0MIxQPKplzBAsCUhpRSlGgVSzJoFkdAtyjRdSl3yXV9lChoBmgJaA9DCK1u9Zz0vvy/lIaUUpRoFUsyaBZHQLcoks+3Yth1fZQoaAZoCWgPQwj6K2SuDIoHwJSGlFKUaBVLMmgWR0C3KesuBczJdX2UKGgGaAloD0MItAOuK2aEBcCUhpRSlGgVSzJoFkdAtym7FhoduHV9lChoBmgJaA9DCASRRZp4hwTAlIaUUpRoFUsyaBZHQLcpcrJr+Hd1fZQoaAZoCWgPQwiqRxrc1lb/v5SGlFKUaBVLMmgWR0C3KTOo5xR3dX2UKGgGaAloD0MIExCTcCGvBMCUhpRSlGgVSzJoFkdAtypvhYNiIHV9lChoBmgJaA9DCDhorz4eOgPAlIaUUpRoFUsyaBZHQLcqP48EFGJ1fZQoaAZoCWgPQwhpOjsZHKUDwJSGlFKUaBVLMmgWR0C3Kfcz2vjfdX2UKGgGaAloD0MICjAsf74t+7+UhpRSlGgVSzJoFkdAtym4Kx9oe3V9lChoBmgJaA9DCFCm0eRibAXAlIaUUpRoFUsyaBZHQLcq9W+GoJl1fZQoaAZoCWgPQwiMTSuFQC72v5SGlFKUaBVLMmgWR0C3KsV3Qla9dX2UKGgGaAloD0MIQBU3bjHfAsCUhpRSlGgVSzJoFkdAtyp9MYdhiXV9lChoBmgJaA9DCD1GeeblMALAlIaUUpRoFUsyaBZHQLcqPh86V+t1fZQoaAZoCWgPQwgsRfKVQIoDwJSGlFKUaBVLMmgWR0C3K3YW+GoKdX2UKGgGaAloD0MIHT7pRIIp+b+UhpRSlGgVSzJoFkdAtytGD+R5knV9lChoBmgJaA9DCG0a22tBrwDAlIaUUpRoFUsyaBZHQLcq/cn3L3d1fZQoaAZoCWgPQwiHGoUks7r0v5SGlFKUaBVLMmgWR0C3Kr6unuRcdX2UKGgGaAloD0MIc7uX++SoAMCUhpRSlGgVSzJoFkdAtywG7g88tHV9lChoBmgJaA9DCElNu5hmGgTAlIaUUpRoFUsyaBZHQLcr13BpHqh1fZQoaAZoCWgPQwhsByP2CaD1v5SGlFKUaBVLMmgWR0C3K48L8aXKdX2UKGgGaAloD0MIlUiil1Fs/7+UhpRSlGgVSzJoFkdAtytP48EFGHV9lChoBmgJaA9DCLjIPV3d8QTAlIaUUpRoFUsyaBZHQLcsjVOsT391fZQoaAZoCWgPQwh/+WTFcPX2v5SGlFKUaBVLMmgWR0C3LF1YQrc1dX2UKGgGaAloD0MISN45lKHq8b+UhpRSlGgVSzJoFkdAtywVDv3JxXV9lChoBmgJaA9DCGh5Htyd9QLAlIaUUpRoFUsyaBZHQLcr1fMwDeV1fZQoaAZoCWgPQwgoKEUr98L9v5SGlFKUaBVLMmgWR0C3LQ9ELH+7dX2UKGgGaAloD0MIhq+vdalRB8CUhpRSlGgVSzJoFkdAtyzfOY6XB3V9lChoBmgJaA9DCA+3Q8NiFPi/lIaUUpRoFUsyaBZHQLcsltiQT251fZQoaAZoCWgPQwhiLxSwHewBwJSGlFKUaBVLMmgWR0C3LFfIjnmrdX2UKGgGaAloD0MIzCpsBrhgAMCUhpRSlGgVSzJoFkdAty2QKw6hg3V9lChoBmgJaA9DCGr7V1aadAHAlIaUUpRoFUsyaBZHQLctYGs3hn91fZQoaAZoCWgPQwhbXU4JiGkHwJSGlFKUaBVLMmgWR0C3LRgYpDu0dX2UKGgGaAloD0MIdAtdiUAVAcCUhpRSlGgVSzJoFkdAtyzZFfAsTXV9lChoBmgJaA9DCJXurrMh/wTAlIaUUpRoFUsyaBZHQLcuEO4XoDB1fZQoaAZoCWgPQwhDHOviNnoIwJSGlFKUaBVLMmgWR0C3LeDkELYxdX2UKGgGaAloD0MI8DZvnBQGBcCUhpRSlGgVSzJoFkdAty2YpF1B+nV9lChoBmgJaA9DCBSWeEDZ1AXAlIaUUpRoFUsyaBZHQLctWZX+2mZ1fZQoaAZoCWgPQwjp0r8klekLwJSGlFKUaBVLMmgWR0C3LpyJ40MxdX2UKGgGaAloD0MIHauUnumFBcCUhpRSlGgVSzJoFkdAty5sb2lEZ3V9lChoBmgJaA9DCDV6NUBp6PK/lIaUUpRoFUsyaBZHQLcuJBMi8nN1fZQoaAZoCWgPQwgQrRVtjnP1v5SGlFKUaBVLMmgWR0C3LeUSuhbodX2UKGgGaAloD0MI+WhxxjBnBcCUhpRSlGgVSzJoFkdAty8dbMX7+HV9lChoBmgJaA9DCOAtkKD48QjAlIaUUpRoFUsyaBZHQLcu7WqtHQR1fZQoaAZoCWgPQwj3V4/7VusNwJSGlFKUaBVLMmgWR0C3LqUnLJS0dX2UKGgGaAloD0MI+5XOh2eJ97+UhpRSlGgVSzJoFkdAty5mIl+mWXV9lChoBmgJaA9DCDgteNFXkPi/lIaUUpRoFUsyaBZHQLcvmmhufmN1fZQoaAZoCWgPQwjMQdDRqlYEwJSGlFKUaBVLMmgWR0C3L2pjMFEBdX2UKGgGaAloD0MI65Cb4Qa8+r+UhpRSlGgVSzJoFkdAty8iFRHf/HV9lChoBmgJaA9DCFe0Oc5togbAlIaUUpRoFUsyaBZHQLcu4vrWy1N1fZQoaAZoCWgPQwg7cM6I0t7+v5SGlFKUaBVLMmgWR0C3MBn4oJAudX2UKGgGaAloD0MIjBL0F3pkEMCUhpRSlGgVSzJoFkdAty/p+5OJtXV9lChoBmgJaA9DCCqoqPqVzvm/lIaUUpRoFUsyaBZHQLcvobypaRp1fZQoaAZoCWgPQwhOYaWCiqoEwJSGlFKUaBVLMmgWR0C3L2KlgtvodX2UKGgGaAloD0MILnB5rBlZ/7+UhpRSlGgVSzJoFkdAtzCbZezD43V9lChoBmgJaA9DCFJ/vcKCmw/AlIaUUpRoFUsyaBZHQLcwa2HtWuJ1fZQoaAZoCWgPQwjJVwIpsWv2v5SGlFKUaBVLMmgWR0C3MCMU/OdHdX2UKGgGaAloD0MIwY2ULZI2A8CUhpRSlGgVSzJoFkdAty/j4WUKRnV9lChoBmgJaA9DCPhPN1Dg/QbAlIaUUpRoFUsyaBZHQLcxGeMQ2/B1fZQoaAZoCWgPQwhKl/4lqUwCwJSGlFKUaBVLMmgWR0C3MOnp0OmSdX2UKGgGaAloD0MIg6eQK/WMAsCUhpRSlGgVSzJoFkdAtzChrSE123V9lChoBmgJaA9DCL/Rjht+twXAlIaUUpRoFUsyaBZHQLcwYnkT6BR1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 100000,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0dbdc4016a8ee157cfb257c18e9a409a571e38fddbf1ba6b621b70119f0947c3
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cc6ce01746dd66d0c5bb3d29f46ca51c28a4779ac826c9c4247dc258d2b13e1
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
- Python: 3.8.10
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
-
- GPU Enabled:
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
2 |
- Python: 3.8.10
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fde57e4c0d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fde57e47450>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677078919942479287, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAzxlvP6NlUb6qZDQ/zxlvP6NlUb6qZDQ/zxlvP6NlUb6qZDQ/zxlvP6NlUb6qZDQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAg/2wv5yXPL8CYAM+trFev4WTt79jLKy/aC8ovcO+Vb/7k0u/s6Wtvmn/sj8sEW0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADPGW8/o2VRvqpkND+vOs49MrHqvOxBZD3PGW8/o2VRvqpkND+vOs49MrHqvOxBZD3PGW8/o2VRvqpkND+vOs49MrHqvOxBZD3PGW8/o2VRvqpkND+vOs49MrHqvOxBZD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.93398756 -0.20448928 0.704661 ]\n [ 0.93398756 -0.20448928 0.704661 ]\n [ 0.93398756 -0.20448928 0.704661 ]\n [ 0.93398756 -0.20448928 0.704661 ]]", "desired_goal": "[[-1.3827366 -0.7366884 0.12829593]\n [-0.86989915 -1.4341894 -1.3451046 ]\n [-0.04106084 -0.83494204 -0.79522675]\n [-0.3391548 1.3984195 0.9260433 ]]", "observation": "[[ 0.93398756 -0.20448928 0.704661 0.10069787 -0.02864895 0.05572693]\n [ 0.93398756 -0.20448928 0.704661 0.10069787 -0.02864895 0.05572693]\n [ 0.93398756 -0.20448928 0.704661 0.10069787 -0.02864895 0.05572693]\n [ 0.93398756 -0.20448928 0.704661 0.10069787 -0.02864895 0.05572693]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAssO1PXT6x73rsIQ+11qWvdC6Jz2Y4ao9oaGivE34Lb0HvF8+zb2zPNXonjwwSHQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08875217 -0.09764567 0.25916228]\n [-0.07341545 0.04094964 0.0834381 ]\n [-0.01985246 -0.04247313 0.2184907 ]\n [ 0.02194109 0.01939813 0.05963916]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITWiSWFJOJMCUhpRSlIwBbJRLMowBdJRHQJhJmsq8UVV1fZQoaAZoCWgPQwhzgjY5fIIRwJSGlFKUaBVLMmgWR0CYSMnLq2SddX2UKGgGaAloD0MINnUeFf/nFsCUhpRSlGgVSzJoFkdAmEfgSBbwB3V9lChoBmgJaA9DCOylKQKcXgvAlIaUUpRoFUsyaBZHQJhG9Nzr/sF1fZQoaAZoCWgPQwgXY2AdxwcgwJSGlFKUaBVLMmgWR0CYS819ORDDdX2UKGgGaAloD0MI1CzQ7pBCHcCUhpRSlGgVSzJoFkdAmEr8tPHktHV9lChoBmgJaA9DCDWYhuEjQg7AlIaUUpRoFUsyaBZHQJhKFEG7jDN1fZQoaAZoCWgPQwhfKGA7GOEawJSGlFKUaBVLMmgWR0CYSSYNRWLhdX2UKGgGaAloD0MIuwz/6QbqHcCUhpRSlGgVSzJoFkdAmE4hffGdZ3V9lChoBmgJaA9DCAr19BH4gw/AlIaUUpRoFUsyaBZHQJhNUT+NtIl1fZQoaAZoCWgPQwgNqDej5qsZwJSGlFKUaBVLMmgWR0CYTGf/3nIRdX2UKGgGaAloD0MIYM0BgjmaGsCUhpRSlGgVSzJoFkdAmEt7/4qPO3V9lChoBmgJaA9DCFIrTN9rSAnAlIaUUpRoFUsyaBZHQJhQeZYxL011fZQoaAZoCWgPQwg4o+ar5GMhwJSGlFKUaBVLMmgWR0CYT6fSx7iRdX2UKGgGaAloD0MIQnxgx3/hHMCUhpRSlGgVSzJoFkdAmE7BHXmNi3V9lChoBmgJaA9DCJRoyeNpWR7AlIaUUpRoFUsyaBZHQJhN02sJY1Z1fZQoaAZoCWgPQwieDI6SV9ciwJSGlFKUaBVLMmgWR0CYUrJsO5J9dX2UKGgGaAloD0MIKqp+pfORGcCUhpRSlGgVSzJoFkdAmFHgnDziCXV9lChoBmgJaA9DCG+gwDv5LCTAlIaUUpRoFUsyaBZHQJhQ95UtI091fZQoaAZoCWgPQwizl22nrZkkwJSGlFKUaBVLMmgWR0CYUAm6GxlhdX2UKGgGaAloD0MI/1w0ZDzKDMCUhpRSlGgVSzJoFkdAmFTa9bor4HV9lChoBmgJaA9DCLkXmBWKlBzAlIaUUpRoFUsyaBZHQJhUCR5kbxV1fZQoaAZoCWgPQwi7tUyG4zn8v5SGlFKUaBVLMmgWR0CYUyBkI5YHdX2UKGgGaAloD0MI+mNam8ZGGcCUhpRSlGgVSzJoFkdAmFIykoF3ZHV9lChoBmgJaA9DCKMCJ9vAvRfAlIaUUpRoFUsyaBZHQJhW9iG34Kx1fZQoaAZoCWgPQwhwlpLlJDQbwJSGlFKUaBVLMmgWR0CYViRb8m8edX2UKGgGaAloD0MIJLcm3ZaYH8CUhpRSlGgVSzJoFkdAmFU68Hv+fnV9lChoBmgJaA9DCKlKW1zjEw/AlIaUUpRoFUsyaBZHQJhUTa9K28Z1fZQoaAZoCWgPQwiY9s391UMcwJSGlFKUaBVLMmgWR0CYWQTxG2CvdX2UKGgGaAloD0MILJ0PzxLMK8CUhpRSlGgVSzJoFkdAmFg0tmL9/HV9lChoBmgJaA9DCFIOZhNgUCfAlIaUUpRoFUsyaBZHQJhXS6iCaql1fZQoaAZoCWgPQwhRMc7fhIIIwJSGlFKUaBVLMmgWR0CYVl2q1gIAdX2UKGgGaAloD0MIWoKMgAqHE8CUhpRSlGgVSzJoFkdAmFrfr8iwCHV9lChoBmgJaA9DCHYyOEpexSLAlIaUUpRoFUsyaBZHQJhaDg9/z8R1fZQoaAZoCWgPQwh00CUcepsdwJSGlFKUaBVLMmgWR0CYWSVFhG6PdX2UKGgGaAloD0MIUz9vKlJBHcCUhpRSlGgVSzJoFkdAmFg3gYP5HnV9lChoBmgJaA9DCPqZet0iYBHAlIaUUpRoFUsyaBZHQJhc3tZ3cHp1fZQoaAZoCWgPQwgZ529CIRomwJSGlFKUaBVLMmgWR0CYXA3rD63zdX2UKGgGaAloD0MI1siutIzUGMCUhpRSlGgVSzJoFkdAmFsk7wKBunV9lChoBmgJaA9DCLHEA8qmnBjAlIaUUpRoFUsyaBZHQJhaN5X2dup1fZQoaAZoCWgPQwgwLeqT3FEiwJSGlFKUaBVLMmgWR0CYYL2tdRixdX2UKGgGaAloD0MIGjOJesFnAsCUhpRSlGgVSzJoFkdAmF/u+h4+r3V9lChoBmgJaA9DCA6EZAETGBnAlIaUUpRoFUsyaBZHQJhfBtO2y9p1fZQoaAZoCWgPQwhWtg95yzUEwJSGlFKUaBVLMmgWR0CYXh5cTrVwdX2UKGgGaAloD0MIgVmhSPczAcCUhpRSlGgVSzJoFkdAmGTdL127nXV9lChoBmgJaA9DCOfG9IQl/gzAlIaUUpRoFUsyaBZHQJhkDO1OTJR1fZQoaAZoCWgPQwhJEoQroIAiwJSGlFKUaBVLMmgWR0CYYyjcEeQudX2UKGgGaAloD0MIwF/Mlqy6H8CUhpRSlGgVSzJoFkdAmGI7xNIsiHV9lChoBmgJaA9DCEAS9u0kiiPAlIaUUpRoFUsyaBZHQJhoZ0knkT91fZQoaAZoCWgPQwgbZ9MRwE0MwJSGlFKUaBVLMmgWR0CYZ5kDIRywdX2UKGgGaAloD0MIp3oy/+jLGcCUhpRSlGgVSzJoFkdAmGaw4wRGt3V9lChoBmgJaA9DCB2QhH078SbAlIaUUpRoFUsyaBZHQJhlxRQ79yd1fZQoaAZoCWgPQwixNsZOeAkQwJSGlFKUaBVLMmgWR0CYbIaLXL/0dX2UKGgGaAloD0MIZhTLLa3mE8CUhpRSlGgVSzJoFkdAmGu4Ia99MXV9lChoBmgJaA9DCHTsoBLX0RnAlIaUUpRoFUsyaBZHQJhq0GZ/kNp1fZQoaAZoCWgPQwg/c9anHGMQwJSGlFKUaBVLMmgWR0CYaeayrxRVdX2UKGgGaAloD0MIclEtIooJHMCUhpRSlGgVSzJoFkdAmHAA22oegnV9lChoBmgJaA9DCKRskbQbHQDAlIaUUpRoFUsyaBZHQJhvM1YQrc11fZQoaAZoCWgPQwhq2sU00z0pwJSGlFKUaBVLMmgWR0CYbkyd4FA3dX2UKGgGaAloD0MIArovZ7bbF8CUhpRSlGgVSzJoFkdAmG1gYgq3E3V9lChoBmgJaA9DCIlhhzHpJyDAlIaUUpRoFUsyaBZHQJhzILE1l5J1fZQoaAZoCWgPQwiLic3HtfEhwJSGlFKUaBVLMmgWR0CYclCw8nuzdX2UKGgGaAloD0MIgc6kTdVdHMCUhpRSlGgVSzJoFkdAmHFpEH+qBHV9lChoBmgJaA9DCCdQxCKGnSDAlIaUUpRoFUsyaBZHQJhwfTd+G491fZQoaAZoCWgPQwgpPGh23VskwJSGlFKUaBVLMmgWR0CYdlnGbTc7dX2UKGgGaAloD0MI21Gco44uIcCUhpRSlGgVSzJoFkdAmHWIUN8VpXV9lChoBmgJaA9DCBGrP8Iw4AfAlIaUUpRoFUsyaBZHQJh0n+o99tx1fZQoaAZoCWgPQwgyq3e4HXInwJSGlFKUaBVLMmgWR0CYc7HerMkhdX2UKGgGaAloD0MIjDBFuTR+FcCUhpRSlGgVSzJoFkdAmHg2qo60Y3V9lChoBmgJaA9DCN0KYTWW0CDAlIaUUpRoFUsyaBZHQJh3ZNXYDkl1fZQoaAZoCWgPQwjnFyXoL9QWwJSGlFKUaBVLMmgWR0CYdnt6HCXQdX2UKGgGaAloD0MIBkfJq3P8IMCUhpRSlGgVSzJoFkdAmHWOgctGu3V9lChoBmgJaA9DCKhWX10VOBrAlIaUUpRoFUsyaBZHQJh6XBDXvph1fZQoaAZoCWgPQwjxgR3/BaIgwJSGlFKUaBVLMmgWR0CYeYyxzJZGdX2UKGgGaAloD0MIkBK7trf7GsCUhpRSlGgVSzJoFkdAmHijiKiwjnV9lChoBmgJaA9DCHYyOEpepSHAlIaUUpRoFUsyaBZHQJh3tZQpF1B1fZQoaAZoCWgPQwhAUdmwppISwJSGlFKUaBVLMmgWR0CYfDnR9gF5dX2UKGgGaAloD0MIJ92WyAVXGcCUhpRSlGgVSzJoFkdAmHtoBRyfc3V9lChoBmgJaA9DCC82rRQCyRrAlIaUUpRoFUsyaBZHQJh6fzDn/1h1fZQoaAZoCWgPQwjxZDcz+mkhwJSGlFKUaBVLMmgWR0CYeZIuoP07dX2UKGgGaAloD0MIWOGWj6QEFsCUhpRSlGgVSzJoFkdAmH4tCNS62HV9lChoBmgJaA9DCGrbMAqCtyHAlIaUUpRoFUsyaBZHQJh9W0D2alV1fZQoaAZoCWgPQwg/V1uxv8wKwJSGlFKUaBVLMmgWR0CYfHM9bHIZdX2UKGgGaAloD0MI8s02N6anG8CUhpRSlGgVSzJoFkdAmHuFXRw6yXV9lChoBmgJaA9DCNKKbyh8dva/lIaUUpRoFUsyaBZHQJiAPvAoG6h1fZQoaAZoCWgPQwg0ngjiPFwZwJSGlFKUaBVLMmgWR0CYf20yxiXqdX2UKGgGaAloD0MIK6G7JM4yIsCUhpRSlGgVSzJoFkdAmH6EDyOJcnV9lChoBmgJaA9DCEm70cd84BjAlIaUUpRoFUsyaBZHQJh9l1QqI8B1fZQoaAZoCWgPQwg+CAH5EjoXwJSGlFKUaBVLMmgWR0CYghPDHfdidX2UKGgGaAloD0MIi2t8JvsnGMCUhpRSlGgVSzJoFkdAmIFCONo8IXV9lChoBmgJaA9DCDM334ju+QjAlIaUUpRoFUsyaBZHQJiAWJ2t+1B1fZQoaAZoCWgPQwhvumWH+HcSwJSGlFKUaBVLMmgWR0CYf2ptJnQIdX2UKGgGaAloD0MIvviiPV5YH8CUhpRSlGgVSzJoFkdAmIQHMEA5rHV9lChoBmgJaA9DCD2CGylbBCTAlIaUUpRoFUsyaBZHQJiDNWCEpRZ1fZQoaAZoCWgPQwhpN/qYD1gmwJSGlFKUaBVLMmgWR0CYgkw8W9DhdX2UKGgGaAloD0MIJqYLsfq7IMCUhpRSlGgVSzJoFkdAmIFeB19v0nV9lChoBmgJaA9DCF2pZ0EofxjAlIaUUpRoFUsyaBZHQJiF3LeQ+2V1fZQoaAZoCWgPQwgWbCOe7BYdwJSGlFKUaBVLMmgWR0CYhQsv7FbWdX2UKGgGaAloD0MIkQvO4O/HHcCUhpRSlGgVSzJoFkdAmIQhzq8lHHV9lChoBmgJaA9DCBCv6xfsdhbAlIaUUpRoFUsyaBZHQJiDM4ffXPJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 308750, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3c145a9310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3c14621b70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677134349898625985, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAMBHDPsOczzuAjQ0/MBHDPsOczzuAjQ0/MBHDPsOczzuAjQ0/MBHDPsOczzuAjQ0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5BqXPy+RZ783fnK+EPyjvwOJ/b2yYoc/3Sz/PmoqEb9AuNS/XuwQP4DZ17+pNwK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAwEcM+w5zPO4CNDT81fNY50A5ROkQfwzkwEcM+w5zPO4CNDT81fNY50A5ROkQfwzkwEcM+w5zPO4CNDT81fNY50A5ROkQfwzkwEcM+w5zPO4CNDT81fNY50A5ROkQfwzmUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3809905 0.00633583 0.55294037]\n [0.3809905 0.00633583 0.55294037]\n [0.3809905 0.00633583 0.55294037]\n [0.3809905 0.00633583 0.55294037]]", "desired_goal": "[[ 1.1805081 -0.9045591 -0.2368096 ]\n [-1.2811298 -0.12379649 1.0576994 ]\n [ 0.49838915 -0.56705344 -1.6618729 ]\n [ 0.5661067 -1.6863251 -0.5086618 ]]", "observation": "[[3.8099051e-01 6.3358261e-03 5.5294037e-01 4.0909802e-04 7.9749245e-04\n 3.7216593e-04]\n [3.8099051e-01 6.3358261e-03 5.5294037e-01 4.0909802e-04 7.9749245e-04\n 3.7216593e-04]\n [3.8099051e-01 6.3358261e-03 5.5294037e-01 4.0909802e-04 7.9749245e-04\n 3.7216593e-04]\n [3.8099051e-01 6.3358261e-03 5.5294037e-01 4.0909802e-04 7.9749245e-04\n 3.7216593e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfMp9vId47j3OZP88Yjm4PUx0kL1o1yY+mtEQvqRZlj2SoB09uakyPd5PAT63U40+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01549017 0.11644083 0.031176 ]\n [ 0.0899532 -0.07053432 0.16293108]\n [-0.14142457 0.07341316 0.03848321]\n [ 0.04361889 0.12628123 0.27602932]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBfnZyHXT+L+UhpRSlIwBbJRLMowBdJRHQLci/WMCLdh1fZQoaAZoCWgPQwgonN1aJkP+v5SGlFKUaBVLMmgWR0C3Is1hsqJ/dX2UKGgGaAloD0MIBvGBHf8lAcCUhpRSlGgVSzJoFkdAtyKFHww0wnV9lChoBmgJaA9DCNwtyQG72va/lIaUUpRoFUsyaBZHQLciRgGKQ7t1fZQoaAZoCWgPQwj7HvXXK+wCwJSGlFKUaBVLMmgWR0C3I36Oo5xSdX2UKGgGaAloD0MIwha7fVaZ9r+UhpRSlGgVSzJoFkdAtyNOvHLidnV9lChoBmgJaA9DCDNslPWbCfa/lIaUUpRoFUsyaBZHQLcjBn1Fpfx1fZQoaAZoCWgPQwjohqbs9KMBwJSGlFKUaBVLMmgWR0C3Isdy1eBydX2UKGgGaAloD0MIUb8LW7NVAsCUhpRSlGgVSzJoFkdAtyQA12q1gHV9lChoBmgJaA9DCO2b+6vHnQnAlIaUUpRoFUsyaBZHQLcj0RtP5591fZQoaAZoCWgPQwg+6USCqSb7v5SGlFKUaBVLMmgWR0C3I4jBMzuXdX2UKGgGaAloD0MIptHkYgyMAMCUhpRSlGgVSzJoFkdAtyNJlBhQWXV9lChoBmgJaA9DCDI4Sl6d4/S/lIaUUpRoFUsyaBZHQLckfhsImgJ1fZQoaAZoCWgPQwjsiEM2kM4EwJSGlFKUaBVLMmgWR0C3JE4gRsdldX2UKGgGaAloD0MIF5rrNNIyA8CUhpRSlGgVSzJoFkdAtyQFvQ4S6HV9lChoBmgJaA9DCFzlCYSdYgDAlIaUUpRoFUsyaBZHQLcjxoqkM1F1fZQoaAZoCWgPQwgzpmCNsykHwJSGlFKUaBVLMmgWR0C3JSr0OEuhdX2UKGgGaAloD0MImkARixj2AMCUhpRSlGgVSzJoFkdAtyT7HJcPfHV9lChoBmgJaA9DCElL5e0Ip/O/lIaUUpRoFUsyaBZHQLcksu+AVfx1fZQoaAZoCWgPQwguymyQSQbyv5SGlFKUaBVLMmgWR0C3JHRY/3WXdX2UKGgGaAloD0MIG7tE9dbAA8CUhpRSlGgVSzJoFkdAtyXxYnv2G3V9lChoBmgJaA9DCMprJXSXxPi/lIaUUpRoFUsyaBZHQLclwaCcwxp1fZQoaAZoCWgPQwgIPgYrTvUEwJSGlFKUaBVLMmgWR0C3JXnSF49pdX2UKGgGaAloD0MIK2wGuCBb9r+UhpRSlGgVSzJoFkdAtyU65J9RaXV9lChoBmgJaA9DCNFXkGYsWvy/lIaUUpRoFUsyaBZHQLcms9C/oJR1fZQoaAZoCWgPQwgkmGpmLUX+v5SGlFKUaBVLMmgWR0C3JoQ6QvHtdX2UKGgGaAloD0MIbqKW5lboAsCUhpRSlGgVSzJoFkdAtyY8IBzV+nV9lChoBmgJaA9DCA+aXfdWpPi/lIaUUpRoFUsyaBZHQLcl/SS/0ul1fZQoaAZoCWgPQwjl8h/Sb5/4v5SGlFKUaBVLMmgWR0C3J4vJA+pwdX2UKGgGaAloD0MITSzwFd16BcCUhpRSlGgVSzJoFkdAtydcYFaB7XV9lChoBmgJaA9DCE7soX2sIAPAlIaUUpRoFUsyaBZHQLcnFIfr8ix1fZQoaAZoCWgPQwi+vtalRogJwJSGlFKUaBVLMmgWR0C3JtWfGuLadX2UKGgGaAloD0MImx4UlKLV97+UhpRSlGgVSzJoFkdAtyhrbVSXMXV9lChoBmgJaA9DCIl9AihG1vi/lIaUUpRoFUsyaBZHQLcoO6Y3Ns51fZQoaAZoCWgPQwh1AwXeyWcAwJSGlFKUaBVLMmgWR0C3J/PVI7NjdX2UKGgGaAloD0MIdsO2RZnNBsCUhpRSlGgVSzJoFkdAtye1Mh5gPXV9lChoBmgJaA9DCOdvQiECjvW/lIaUUpRoFUsyaBZHQLcpSODJ2dN1fZQoaAZoCWgPQwjEzD6PUT4GwJSGlFKUaBVLMmgWR0C3KRlbqyGBdX2UKGgGaAloD0MIxQPKplzBAsCUhpRSlGgVSzJoFkdAtyjRdSl3yXV9lChoBmgJaA9DCK1u9Zz0vvy/lIaUUpRoFUsyaBZHQLcoks+3Yth1fZQoaAZoCWgPQwj6K2SuDIoHwJSGlFKUaBVLMmgWR0C3KesuBczJdX2UKGgGaAloD0MItAOuK2aEBcCUhpRSlGgVSzJoFkdAtym7FhoduHV9lChoBmgJaA9DCASRRZp4hwTAlIaUUpRoFUsyaBZHQLcpcrJr+Hd1fZQoaAZoCWgPQwiqRxrc1lb/v5SGlFKUaBVLMmgWR0C3KTOo5xR3dX2UKGgGaAloD0MIExCTcCGvBMCUhpRSlGgVSzJoFkdAtypvhYNiIHV9lChoBmgJaA9DCDhorz4eOgPAlIaUUpRoFUsyaBZHQLcqP48EFGJ1fZQoaAZoCWgPQwhpOjsZHKUDwJSGlFKUaBVLMmgWR0C3Kfcz2vjfdX2UKGgGaAloD0MICjAsf74t+7+UhpRSlGgVSzJoFkdAtym4Kx9oe3V9lChoBmgJaA9DCFCm0eRibAXAlIaUUpRoFUsyaBZHQLcq9W+GoJl1fZQoaAZoCWgPQwiMTSuFQC72v5SGlFKUaBVLMmgWR0C3KsV3Qla9dX2UKGgGaAloD0MIQBU3bjHfAsCUhpRSlGgVSzJoFkdAtyp9MYdhiXV9lChoBmgJaA9DCD1GeeblMALAlIaUUpRoFUsyaBZHQLcqPh86V+t1fZQoaAZoCWgPQwgsRfKVQIoDwJSGlFKUaBVLMmgWR0C3K3YW+GoKdX2UKGgGaAloD0MIHT7pRIIp+b+UhpRSlGgVSzJoFkdAtytGD+R5knV9lChoBmgJaA9DCG0a22tBrwDAlIaUUpRoFUsyaBZHQLcq/cn3L3d1fZQoaAZoCWgPQwiHGoUks7r0v5SGlFKUaBVLMmgWR0C3Kr6unuRcdX2UKGgGaAloD0MIc7uX++SoAMCUhpRSlGgVSzJoFkdAtywG7g88tHV9lChoBmgJaA9DCElNu5hmGgTAlIaUUpRoFUsyaBZHQLcr13BpHqh1fZQoaAZoCWgPQwhsByP2CaD1v5SGlFKUaBVLMmgWR0C3K48L8aXKdX2UKGgGaAloD0MIlUiil1Fs/7+UhpRSlGgVSzJoFkdAtytP48EFGHV9lChoBmgJaA9DCLjIPV3d8QTAlIaUUpRoFUsyaBZHQLcsjVOsT391fZQoaAZoCWgPQwh/+WTFcPX2v5SGlFKUaBVLMmgWR0C3LF1YQrc1dX2UKGgGaAloD0MISN45lKHq8b+UhpRSlGgVSzJoFkdAtywVDv3JxXV9lChoBmgJaA9DCGh5Htyd9QLAlIaUUpRoFUsyaBZHQLcr1fMwDeV1fZQoaAZoCWgPQwgoKEUr98L9v5SGlFKUaBVLMmgWR0C3LQ9ELH+7dX2UKGgGaAloD0MIhq+vdalRB8CUhpRSlGgVSzJoFkdAtyzfOY6XB3V9lChoBmgJaA9DCA+3Q8NiFPi/lIaUUpRoFUsyaBZHQLcsltiQT251fZQoaAZoCWgPQwhiLxSwHewBwJSGlFKUaBVLMmgWR0C3LFfIjnmrdX2UKGgGaAloD0MIzCpsBrhgAMCUhpRSlGgVSzJoFkdAty2QKw6hg3V9lChoBmgJaA9DCGr7V1aadAHAlIaUUpRoFUsyaBZHQLctYGs3hn91fZQoaAZoCWgPQwhbXU4JiGkHwJSGlFKUaBVLMmgWR0C3LRgYpDu0dX2UKGgGaAloD0MIdAtdiUAVAcCUhpRSlGgVSzJoFkdAtyzZFfAsTXV9lChoBmgJaA9DCJXurrMh/wTAlIaUUpRoFUsyaBZHQLcuEO4XoDB1fZQoaAZoCWgPQwhDHOviNnoIwJSGlFKUaBVLMmgWR0C3LeDkELYxdX2UKGgGaAloD0MI8DZvnBQGBcCUhpRSlGgVSzJoFkdAty2YpF1B+nV9lChoBmgJaA9DCBSWeEDZ1AXAlIaUUpRoFUsyaBZHQLctWZX+2mZ1fZQoaAZoCWgPQwjp0r8klekLwJSGlFKUaBVLMmgWR0C3LpyJ40MxdX2UKGgGaAloD0MIHauUnumFBcCUhpRSlGgVSzJoFkdAty5sb2lEZ3V9lChoBmgJaA9DCDV6NUBp6PK/lIaUUpRoFUsyaBZHQLcuJBMi8nN1fZQoaAZoCWgPQwgQrRVtjnP1v5SGlFKUaBVLMmgWR0C3LeUSuhbodX2UKGgGaAloD0MI+WhxxjBnBcCUhpRSlGgVSzJoFkdAty8dbMX7+HV9lChoBmgJaA9DCOAtkKD48QjAlIaUUpRoFUsyaBZHQLcu7WqtHQR1fZQoaAZoCWgPQwj3V4/7VusNwJSGlFKUaBVLMmgWR0C3LqUnLJS0dX2UKGgGaAloD0MI+5XOh2eJ97+UhpRSlGgVSzJoFkdAty5mIl+mWXV9lChoBmgJaA9DCDgteNFXkPi/lIaUUpRoFUsyaBZHQLcvmmhufmN1fZQoaAZoCWgPQwjMQdDRqlYEwJSGlFKUaBVLMmgWR0C3L2pjMFEBdX2UKGgGaAloD0MI65Cb4Qa8+r+UhpRSlGgVSzJoFkdAty8iFRHf/HV9lChoBmgJaA9DCFe0Oc5togbAlIaUUpRoFUsyaBZHQLcu4vrWy1N1fZQoaAZoCWgPQwg7cM6I0t7+v5SGlFKUaBVLMmgWR0C3MBn4oJAudX2UKGgGaAloD0MIjBL0F3pkEMCUhpRSlGgVSzJoFkdAty/p+5OJtXV9lChoBmgJaA9DCCqoqPqVzvm/lIaUUpRoFUsyaBZHQLcvobypaRp1fZQoaAZoCWgPQwhOYaWCiqoEwJSGlFKUaBVLMmgWR0C3L2KlgtvodX2UKGgGaAloD0MILnB5rBlZ/7+UhpRSlGgVSzJoFkdAtzCbZezD43V9lChoBmgJaA9DCFJ/vcKCmw/AlIaUUpRoFUsyaBZHQLcwa2HtWuJ1fZQoaAZoCWgPQwjJVwIpsWv2v5SGlFKUaBVLMmgWR0C3MCMU/OdHdX2UKGgGaAloD0MIwY2ULZI2A8CUhpRSlGgVSzJoFkdAty/j4WUKRnV9lChoBmgJaA9DCPhPN1Dg/QbAlIaUUpRoFUsyaBZHQLcxGeMQ2/B1fZQoaAZoCWgPQwhKl/4lqUwCwJSGlFKUaBVLMmgWR0C3MOnp0OmSdX2UKGgGaAloD0MIg6eQK/WMAsCUhpRSlGgVSzJoFkdAtzChrSE123V9lChoBmgJaA9DCL/Rjht+twXAlIaUUpRoFUsyaBZHQLcwYnkT6BR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2.5372091121971607, "std_reward": 0.7932564581251333, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-23T08:19:31.459545"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4de13187ee28e7543293f4c9f56833a2eddd7eb13f9c11eca689b7712094cd5f
|
3 |
size 3056
|