File size: 1,865 Bytes
bd81463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82392d4
bd81463
 
 
 
 
 
 
 
 
82392d4
 
bd81463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82392d4
bd81463
 
 
 
 
 
 
 
 
 
 
 
82392d4
 
 
 
 
bd81463
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: distilbert-imdb-demo
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: imdb
      type: imdb
      args: plain_text
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.928
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-imdb-demo

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4328
- Accuracy: 0.928

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3459        | 1.0   | 2657  | 0.2362          | 0.9091   |
| 0.1612        | 2.0   | 5314  | 0.2668          | 0.9248   |
| 0.0186        | 3.0   | 7971  | 0.3274          | 0.9323   |
| 0.1005        | 4.0   | 10628 | 0.3978          | 0.9277   |
| 0.0006        | 5.0   | 13285 | 0.4328          | 0.928    |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0+cu102
- Datasets 2.2.1
- Tokenizers 0.12.1