Eugene Siow commited on
Commit
d6b8d33
1 Parent(s): 3002dd6

Add update results.

Browse files
Files changed (1) hide show
  1. README.md +13 -12
README.md CHANGED
@@ -4,7 +4,7 @@ tags:
4
  - super-image
5
  - image-super-resolution
6
  datasets:
7
- - div2k
8
  metrics:
9
  - pnsr
10
  - ssim
@@ -14,7 +14,7 @@ MSRN model pre-trained on DIV2K (800 images training, augmented to 4000 images,
14
 
15
  The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and model upscaling x2.
16
 
17
- ![Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 4](images/msrn_4_4_compare.png "Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 4")
18
  ## Model description
19
  The MSRN model proposes a feature extraction structure called the multi-scale residual block. This module can "adaptively detect image features at different scales" and "exploit the potential features of the image".
20
  ## Intended uses & limitations
@@ -110,23 +110,24 @@ The results columns below are represented below as `PSNR/SSIM`. They are compare
110
  |Set5 |4x |28.42/0.8101 |**32.19/0.8951** |
111
  |Set14 |2x |30.22/0.8683 | |
112
  |Set14 |3x |27.53/0.7737 | |
113
- |Set14 |4x |25.99/0.7023 |**28.67/0.7833** |
114
  |BSD100 |2x |29.55/0.8425 | |
115
  |BSD100 |3x |27.20/0.7382 | |
116
- |BSD100 |4x |25.96/0.6672 |**27.63/0.7374** |
117
  |Urban100 |2x |26.66/0.8408 | |
118
  |Urban100 |3x | | |
119
  |Urban100 |4x |23.14/0.6573 |**26.12/0.7866** |
120
 
121
- ![Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 2](images/msrn_2_4_compare.png "Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 2")
122
 
123
  ## BibTeX entry and citation info
124
  ```bibtex
125
- @InProceedings{Li_2018_ECCV,
126
- author = {Li, Juncheng and Fang, Faming and Mei, Kangfu and Zhang, Guixu},
127
- title = {Multi-scale Residual Network for Image Super-Resolution},
128
- booktitle = {The European Conference on Computer Vision (ECCV)},
129
- month = {September},
130
- year = {2018}
131
- }
 
132
  ```
 
4
  - super-image
5
  - image-super-resolution
6
  datasets:
7
+ - eugenesiow/Div2k
8
  metrics:
9
  - pnsr
10
  - ssim
 
14
 
15
  The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and model upscaling x2.
16
 
17
+ ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/msrn_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4")
18
  ## Model description
19
  The MSRN model proposes a feature extraction structure called the multi-scale residual block. This module can "adaptively detect image features at different scales" and "exploit the potential features of the image".
20
  ## Intended uses & limitations
 
110
  |Set5 |4x |28.42/0.8101 |**32.19/0.8951** |
111
  |Set14 |2x |30.22/0.8683 | |
112
  |Set14 |3x |27.53/0.7737 | |
113
+ |Set14 |4x |25.99/0.7023 |**28.78/0.7862** |
114
  |BSD100 |2x |29.55/0.8425 | |
115
  |BSD100 |3x |27.20/0.7382 | |
116
+ |BSD100 |4x |25.96/0.6672 |**28.53/0.7657** |
117
  |Urban100 |2x |26.66/0.8408 | |
118
  |Urban100 |3x | | |
119
  |Urban100 |4x |23.14/0.6573 |**26.12/0.7866** |
120
 
121
+ ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/msrn_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2")
122
 
123
  ## BibTeX entry and citation info
124
  ```bibtex
125
+ @InProceedings{Agustsson_2017_CVPR_Workshops,
126
+ author = {Agustsson, Eirikur and Timofte, Radu},
127
+ title = {NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study},
128
+ booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
129
+ url = "http://www.vision.ee.ethz.ch/~timofter/publications/Agustsson-CVPRW-2017.pdf",
130
+ month = {July},
131
+ year = {2017}
132
+ }
133
  ```