Update README.md
Browse files
README.md
CHANGED
@@ -12,44 +12,9 @@ euneeei/hw-midm-7B-nsmc
|
|
12 |
### Training Data
|
13 |
|
14 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
15 |
-
νκ΅μ΄λ‘ λ λ€μ΄λ² μν 리뷰 λ°μ΄ν°μ
μ
λλ€.
|
16 |
-
|
17 |
-
|
18 |
-
#### Training Hyperparameters
|
19 |
-
|
20 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
21 |
-
training_args: TrainingArguments = field(
|
22 |
-
default_factory=lambda: TrainingArguments(
|
23 |
-
output_dir="./results",
|
24 |
-
max_steps=500,
|
25 |
-
logging_steps=20,
|
26 |
-
# save_steps=10,
|
27 |
-
per_device_train_batch_size=1,
|
28 |
-
per_device_eval_batch_size=1,
|
29 |
-
gradient_accumulation_steps=2,
|
30 |
-
gradient_checkpointing=False,
|
31 |
-
group_by_length=False,
|
32 |
-
# learning_rate=1e-4,
|
33 |
-
learning_rate = 2e-4,
|
34 |
-
lr_scheduler_type="cosine",
|
35 |
-
warmup_steps=100,
|
36 |
-
warmup_ratio=0.03,
|
37 |
-
max_grad_norm=0.3,
|
38 |
-
weight_decay=0.05,
|
39 |
-
save_total_limit=20,
|
40 |
-
save_strategy="epoch",
|
41 |
-
num_train_epochs=1,
|
42 |
-
optim="paged_adamw_32bit",
|
43 |
-
fp16=True,
|
44 |
-
remove_unused_columns=False,
|
45 |
-
report_to="wandb",
|
46 |
-
)
|
47 |
-
|
48 |
-
#### Speeds, Sizes, Times [optional]
|
49 |
-
|
50 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
51 |
|
52 |
-
[More Information Needed]
|
53 |
|
54 |
## Evaluation
|
55 |
|
@@ -79,22 +44,23 @@ training_args: TrainingArguments = field(
|
|
79 |
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
80 |
|
81 |
|
82 |
-
precision
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
88 |
|
89 |
-
confusion metrics
|
90 |
|
91 |
-
[[ 466, 26 ]
|
92 |
-
[68, 440]]
|
93 |
|
94 |
[More Information Needed]
|
95 |
|
96 |
### Results
|
97 |
-
|
98 |
[More Information Needed]
|
99 |
|
100 |
|
|
|
12 |
### Training Data
|
13 |
|
14 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
15 |
+
- νκ΅μ΄λ‘ λ λ€μ΄λ² μν 리뷰 λ°μ΄ν°μ
μ
λλ€.
|
16 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
18 |
|
19 |
## Evaluation
|
20 |
|
|
|
44 |
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
45 |
|
46 |
|
47 |
+
| | precision | recall | f1-score | support|
|
48 |
+
|----|----|----|-------|------|
|
49 |
+
negative| 0.87 | 0.95 | 091 | 492
|
50 |
+
positive | 0.94 | 0.87 | 0.90 | 508
|
51 |
+
accuracy | | | 0.91 | 1000
|
52 |
+
macro avg | 0.91 | 0.91 | 0.91 | 1000
|
53 |
+
weighted avg | 0.91 | 0.91 | 0.91 | 1000
|
54 |
|
55 |
+
- ### confusion metrics
|
56 |
|
57 |
+
### [[ 466, 26 ]
|
58 |
+
### [68, 440]]
|
59 |
|
60 |
[More Information Needed]
|
61 |
|
62 |
### Results
|
63 |
+
- ###μ νλ 0.51 -> 0.91λ‘ λμμ‘μ΅λλ€
|
64 |
[More Information Needed]
|
65 |
|
66 |
|