--- library_name: peft base_model: jangmin/midm-7b-safetensors-only --- # Model Card for Model ID euneeei/hw-midm-7B-nsmc ### Training Data 한국어로 된 네이버 영화 리뷰 데이터셋입니다. #### Training Hyperparameters - **Training regime:** [More Information Needed] training_args: TrainingArguments = field( default_factory=lambda: TrainingArguments( output_dir="./results", max_steps=500, logging_steps=20, # save_steps=10, per_device_train_batch_size=1, per_device_eval_batch_size=1, gradient_accumulation_steps=2, gradient_checkpointing=False, group_by_length=False, # learning_rate=1e-4, learning_rate = 2e-4, lr_scheduler_type="cosine", warmup_steps=100, warmup_ratio=0.03, max_grad_norm=0.3, weight_decay=0.05, save_total_limit=20, save_strategy="epoch", num_train_epochs=1, optim="paged_adamw_32bit", fp16=True, remove_unused_columns=False, report_to="wandb", ) #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data 1000개 [More Information Needed] #### Factors learning_rate : 1e-4-> 2e-4 max_steps=500 설정 warmup_steps=100 설정 [More Information Needed] #### Metrics precision recall f1-score support negative 0.87 0.95 091 492 positive 0.94 0.87 0.90 508 accuracy 0.91 1000 macro avg 0.91 0.91 0.91 1000 weighted avg 0.91 0.91 0.91 1000 confusion metrics [[ 466, 26 ] [68, 440]] [More Information Needed] ### Results 정확도 0.51 -> 0.91로 높아졌습니다 [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0