evanarlian
commited on
Commit
•
2d5667c
1
Parent(s):
0d41ceb
update model card README.md
Browse files
README.md
CHANGED
@@ -17,7 +17,7 @@ model-index:
|
|
17 |
metrics:
|
18 |
- name: Wer
|
19 |
type: wer
|
20 |
-
value: 0.
|
21 |
---
|
22 |
|
23 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -27,8 +27,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
27 |
|
28 |
This model is a fine-tuned version of [evanarlian/distil-wav2vec2-xls-r-113m-id](https://huggingface.co/evanarlian/distil-wav2vec2-xls-r-113m-id) on the evanarlian/common_voice_11_0_id_filtered dataset.
|
29 |
It achieves the following results on the evaluation set:
|
30 |
-
- Loss: 0.
|
31 |
-
- Wer: 0.
|
32 |
|
33 |
## Model description
|
34 |
|
@@ -51,26 +51,45 @@ The following hyperparameters were used during training:
|
|
51 |
- train_batch_size: 8
|
52 |
- eval_batch_size: 8
|
53 |
- seed: 42
|
54 |
-
- gradient_accumulation_steps:
|
55 |
-
- total_train_batch_size:
|
56 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
57 |
- lr_scheduler_type: linear
|
58 |
- lr_scheduler_warmup_ratio: 0.3
|
59 |
-
- num_epochs:
|
60 |
- mixed_precision_training: Native AMP
|
61 |
|
62 |
### Training results
|
63 |
|
64 |
-
| Training Loss | Epoch | Step
|
65 |
-
|
66 |
-
|
|
67 |
-
|
|
68 |
-
| 1.
|
69 |
-
|
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
### Framework versions
|
|
|
17 |
metrics:
|
18 |
- name: Wer
|
19 |
type: wer
|
20 |
+
value: 0.39516649755557604
|
21 |
---
|
22 |
|
23 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
27 |
|
28 |
This model is a fine-tuned version of [evanarlian/distil-wav2vec2-xls-r-113m-id](https://huggingface.co/evanarlian/distil-wav2vec2-xls-r-113m-id) on the evanarlian/common_voice_11_0_id_filtered dataset.
|
29 |
It achieves the following results on the evaluation set:
|
30 |
+
- Loss: 0.3280
|
31 |
+
- Wer: 0.3952
|
32 |
|
33 |
## Model description
|
34 |
|
|
|
51 |
- train_batch_size: 8
|
52 |
- eval_batch_size: 8
|
53 |
- seed: 42
|
54 |
+
- gradient_accumulation_steps: 3
|
55 |
+
- total_train_batch_size: 24
|
56 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
57 |
- lr_scheduler_type: linear
|
58 |
- lr_scheduler_warmup_ratio: 0.3
|
59 |
+
- num_epochs: 25.0
|
60 |
- mixed_precision_training: Native AMP
|
61 |
|
62 |
### Training results
|
63 |
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
65 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
66 |
+
| 3.2512 | 0.92 | 1000 | 2.9098 | 1.0000 |
|
67 |
+
| 2.163 | 1.84 | 2000 | 1.4810 | 0.9941 |
|
68 |
+
| 1.2472 | 2.75 | 3000 | 0.9604 | 0.9196 |
|
69 |
+
| 1.0166 | 3.67 | 4000 | 0.8240 | 0.8498 |
|
70 |
+
| 0.8765 | 4.59 | 5000 | 0.6873 | 0.7741 |
|
71 |
+
| 0.7712 | 5.51 | 6000 | 0.6083 | 0.7111 |
|
72 |
+
| 0.6892 | 6.43 | 7000 | 0.5546 | 0.6592 |
|
73 |
+
| 0.6314 | 7.35 | 8000 | 0.5022 | 0.6108 |
|
74 |
+
| 0.5779 | 8.26 | 9000 | 0.4850 | 0.5825 |
|
75 |
+
| 0.5245 | 9.18 | 10000 | 0.4665 | 0.5538 |
|
76 |
+
| 0.4858 | 10.1 | 11000 | 0.4282 | 0.5279 |
|
77 |
+
| 0.4616 | 11.02 | 12000 | 0.4053 | 0.5082 |
|
78 |
+
| 0.421 | 11.94 | 13000 | 0.3809 | 0.4935 |
|
79 |
+
| 0.4064 | 12.86 | 14000 | 0.3706 | 0.4781 |
|
80 |
+
| 0.3758 | 13.77 | 15000 | 0.3743 | 0.4672 |
|
81 |
+
| 0.3598 | 14.69 | 16000 | 0.3571 | 0.4521 |
|
82 |
+
| 0.3441 | 15.61 | 17000 | 0.3455 | 0.4368 |
|
83 |
+
| 0.3279 | 16.53 | 18000 | 0.3398 | 0.4386 |
|
84 |
+
| 0.3086 | 17.45 | 19000 | 0.3512 | 0.4284 |
|
85 |
+
| 0.3013 | 18.37 | 20000 | 0.3321 | 0.4233 |
|
86 |
+
| 0.2963 | 19.28 | 21000 | 0.3391 | 0.4178 |
|
87 |
+
| 0.2831 | 20.2 | 22000 | 0.3438 | 0.4114 |
|
88 |
+
| 0.2801 | 21.12 | 23000 | 0.3336 | 0.4056 |
|
89 |
+
| 0.2623 | 22.04 | 24000 | 0.3317 | 0.4012 |
|
90 |
+
| 0.263 | 22.96 | 25000 | 0.3280 | 0.4005 |
|
91 |
+
| 0.2529 | 23.88 | 26000 | 0.3268 | 0.3951 |
|
92 |
+
| 0.2492 | 24.79 | 27000 | 0.3280 | 0.3952 |
|
93 |
|
94 |
|
95 |
### Framework versions
|