evanarlian commited on
Commit
2d5667c
1 Parent(s): 0d41ceb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -16
README.md CHANGED
@@ -17,7 +17,7 @@ model-index:
17
  metrics:
18
  - name: Wer
19
  type: wer
20
- value: 0.6403468314731113
21
  ---
22
 
23
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -27,8 +27,8 @@ should probably proofread and complete it, then remove this comment. -->
27
 
28
  This model is a fine-tuned version of [evanarlian/distil-wav2vec2-xls-r-113m-id](https://huggingface.co/evanarlian/distil-wav2vec2-xls-r-113m-id) on the evanarlian/common_voice_11_0_id_filtered dataset.
29
  It achieves the following results on the evaluation set:
30
- - Loss: 0.5214
31
- - Wer: 0.6403
32
 
33
  ## Model description
34
 
@@ -51,26 +51,45 @@ The following hyperparameters were used during training:
51
  - train_batch_size: 8
52
  - eval_batch_size: 8
53
  - seed: 42
54
- - gradient_accumulation_steps: 2
55
- - total_train_batch_size: 16
56
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
  - lr_scheduler_type: linear
58
  - lr_scheduler_warmup_ratio: 0.3
59
- - num_epochs: 5.0
60
  - mixed_precision_training: Native AMP
61
 
62
  ### Training results
63
 
64
- | Training Loss | Epoch | Step | Validation Loss | Wer |
65
- |:-------------:|:-----:|:----:|:---------------:|:------:|
66
- | 2.8452 | 0.61 | 1000 | 2.8065 | 1.0 |
67
- | 1.3277 | 1.22 | 2000 | 1.0774 | 0.9330 |
68
- | 1.025 | 1.84 | 3000 | 0.8000 | 0.8474 |
69
- | 0.8497 | 2.45 | 4000 | 0.6812 | 0.7669 |
70
- | 0.7678 | 3.06 | 5000 | 0.6125 | 0.7186 |
71
- | 0.6886 | 3.67 | 6000 | 0.5758 | 0.6812 |
72
- | 0.6318 | 4.29 | 7000 | 0.5420 | 0.6570 |
73
- | 0.6086 | 4.9 | 8000 | 0.5214 | 0.6403 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
 
76
  ### Framework versions
 
17
  metrics:
18
  - name: Wer
19
  type: wer
20
+ value: 0.39516649755557604
21
  ---
22
 
23
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
27
 
28
  This model is a fine-tuned version of [evanarlian/distil-wav2vec2-xls-r-113m-id](https://huggingface.co/evanarlian/distil-wav2vec2-xls-r-113m-id) on the evanarlian/common_voice_11_0_id_filtered dataset.
29
  It achieves the following results on the evaluation set:
30
+ - Loss: 0.3280
31
+ - Wer: 0.3952
32
 
33
  ## Model description
34
 
 
51
  - train_batch_size: 8
52
  - eval_batch_size: 8
53
  - seed: 42
54
+ - gradient_accumulation_steps: 3
55
+ - total_train_batch_size: 24
56
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
  - lr_scheduler_type: linear
58
  - lr_scheduler_warmup_ratio: 0.3
59
+ - num_epochs: 25.0
60
  - mixed_precision_training: Native AMP
61
 
62
  ### Training results
63
 
64
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
65
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
66
+ | 3.2512 | 0.92 | 1000 | 2.9098 | 1.0000 |
67
+ | 2.163 | 1.84 | 2000 | 1.4810 | 0.9941 |
68
+ | 1.2472 | 2.75 | 3000 | 0.9604 | 0.9196 |
69
+ | 1.0166 | 3.67 | 4000 | 0.8240 | 0.8498 |
70
+ | 0.8765 | 4.59 | 5000 | 0.6873 | 0.7741 |
71
+ | 0.7712 | 5.51 | 6000 | 0.6083 | 0.7111 |
72
+ | 0.6892 | 6.43 | 7000 | 0.5546 | 0.6592 |
73
+ | 0.6314 | 7.35 | 8000 | 0.5022 | 0.6108 |
74
+ | 0.5779 | 8.26 | 9000 | 0.4850 | 0.5825 |
75
+ | 0.5245 | 9.18 | 10000 | 0.4665 | 0.5538 |
76
+ | 0.4858 | 10.1 | 11000 | 0.4282 | 0.5279 |
77
+ | 0.4616 | 11.02 | 12000 | 0.4053 | 0.5082 |
78
+ | 0.421 | 11.94 | 13000 | 0.3809 | 0.4935 |
79
+ | 0.4064 | 12.86 | 14000 | 0.3706 | 0.4781 |
80
+ | 0.3758 | 13.77 | 15000 | 0.3743 | 0.4672 |
81
+ | 0.3598 | 14.69 | 16000 | 0.3571 | 0.4521 |
82
+ | 0.3441 | 15.61 | 17000 | 0.3455 | 0.4368 |
83
+ | 0.3279 | 16.53 | 18000 | 0.3398 | 0.4386 |
84
+ | 0.3086 | 17.45 | 19000 | 0.3512 | 0.4284 |
85
+ | 0.3013 | 18.37 | 20000 | 0.3321 | 0.4233 |
86
+ | 0.2963 | 19.28 | 21000 | 0.3391 | 0.4178 |
87
+ | 0.2831 | 20.2 | 22000 | 0.3438 | 0.4114 |
88
+ | 0.2801 | 21.12 | 23000 | 0.3336 | 0.4056 |
89
+ | 0.2623 | 22.04 | 24000 | 0.3317 | 0.4012 |
90
+ | 0.263 | 22.96 | 25000 | 0.3280 | 0.4005 |
91
+ | 0.2529 | 23.88 | 26000 | 0.3268 | 0.3951 |
92
+ | 0.2492 | 24.79 | 27000 | 0.3280 | 0.3952 |
93
 
94
 
95
  ### Framework versions