--- tags: - generated_from_trainer datasets: - evanarlian/common_voice_11_0_id_filtered metrics: - wer model-index: - name: wav2vec2-xls-r-113m-id results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: evanarlian/common_voice_11_0_id_filtered type: evanarlian/common_voice_11_0_id_filtered metrics: - name: Wer type: wer value: 0.39516649755557604 --- # wav2vec2-xls-r-113m-id This model is a fine-tuned version of [evanarlian/distil-wav2vec2-xls-r-113m-id](https://huggingface.co/evanarlian/distil-wav2vec2-xls-r-113m-id) on the evanarlian/common_voice_11_0_id_filtered dataset. It achieves the following results on the evaluation set: - Loss: 0.3280 - Wer: 0.3952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 25.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.2512 | 0.92 | 1000 | 2.9098 | 1.0000 | | 2.163 | 1.84 | 2000 | 1.4810 | 0.9941 | | 1.2472 | 2.75 | 3000 | 0.9604 | 0.9196 | | 1.0166 | 3.67 | 4000 | 0.8240 | 0.8498 | | 0.8765 | 4.59 | 5000 | 0.6873 | 0.7741 | | 0.7712 | 5.51 | 6000 | 0.6083 | 0.7111 | | 0.6892 | 6.43 | 7000 | 0.5546 | 0.6592 | | 0.6314 | 7.35 | 8000 | 0.5022 | 0.6108 | | 0.5779 | 8.26 | 9000 | 0.4850 | 0.5825 | | 0.5245 | 9.18 | 10000 | 0.4665 | 0.5538 | | 0.4858 | 10.1 | 11000 | 0.4282 | 0.5279 | | 0.4616 | 11.02 | 12000 | 0.4053 | 0.5082 | | 0.421 | 11.94 | 13000 | 0.3809 | 0.4935 | | 0.4064 | 12.86 | 14000 | 0.3706 | 0.4781 | | 0.3758 | 13.77 | 15000 | 0.3743 | 0.4672 | | 0.3598 | 14.69 | 16000 | 0.3571 | 0.4521 | | 0.3441 | 15.61 | 17000 | 0.3455 | 0.4368 | | 0.3279 | 16.53 | 18000 | 0.3398 | 0.4386 | | 0.3086 | 17.45 | 19000 | 0.3512 | 0.4284 | | 0.3013 | 18.37 | 20000 | 0.3321 | 0.4233 | | 0.2963 | 19.28 | 21000 | 0.3391 | 0.4178 | | 0.2831 | 20.2 | 22000 | 0.3438 | 0.4114 | | 0.2801 | 21.12 | 23000 | 0.3336 | 0.4056 | | 0.2623 | 22.04 | 24000 | 0.3317 | 0.4012 | | 0.263 | 22.96 | 25000 | 0.3280 | 0.4005 | | 0.2529 | 23.88 | 26000 | 0.3268 | 0.3951 | | 0.2492 | 24.79 | 27000 | 0.3280 | 0.3952 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.1