File size: 1,956 Bytes
577140a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-small-id
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-id

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4034
- Wer: 13.6494

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1014        | 4.95  | 500  | 0.2583          | 13.6355 |
| 0.0058        | 9.9   | 1000 | 0.3169          | 13.2851 |
| 0.0017        | 14.85 | 1500 | 0.3488          | 13.2251 |
| 0.001         | 19.8  | 2000 | 0.3639          | 13.3542 |
| 0.0007        | 24.75 | 2500 | 0.3756          | 13.5018 |
| 0.0005        | 29.7  | 3000 | 0.3844          | 13.5617 |
| 0.0005        | 34.65 | 3500 | 0.3922          | 13.6401 |
| 0.0004        | 39.6  | 4000 | 0.3981          | 13.6032 |
| 0.0003        | 44.55 | 4500 | 0.4019          | 13.6632 |
| 0.0003        | 49.5  | 5000 | 0.4034          | 13.6494 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2