import os from datetime import datetime from diffusers import StableDiffusionPipeline, StableDiffusionLDM3DPipeline streetview_path="streetview-v4-10000-images.safetensors" sd_diffusers_path = "checkpoints/v2-1_768-nonema-pruned.safetensors" ldm3d_path = "checkpoints/ldm3d-pano" prompt_file_path = "prompts/combined_prompts_plain.txt" num_inference_steps= 50 sample_basename = "streetview" n_prompt = "bad, deformed, ugly, low quality, underexposed, overexposed, grainy, cartoon, anime" original_config_file="v2-inference-v.yaml" HEIGHT = 768 WIDTH = 2 * HEIGHT timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_directory = f'Generated Images/ldm3d' # Create the directory if it does not exist os.makedirs(output_directory, exist_ok=True) # streetview and sd21 #pipe = StableDiffusionPipeline.from_single_file(streetview_path, use_auth_token=False, local_files_only=True, original_config_file=original_config_file) #ldm3d-pano pipe = StableDiffusionLDM3DPipeline.from_pretrained(ldm3d_path, use_auth_token=False, local_files_only=True, original_config_file=original_config_file) pipe = pipe.to("cuda") with open(prompt_file_path, 'r') as file: prompts = file.readlines() for i, prompt in enumerate(prompts, start=1): prompt = prompt.strip() sample_name = f"{i}_{prompt}_{HEIGHT}_{WIDTH}.png" save_path = os.path.join(output_directory, sample_name) # streetview and sd21 #image = pipe(prompt=prompt, num_inference_steps=num_inference_steps, negative_prompt=n_prompt, height=HEIGHT, width=WIDTH).images[0] # ldm3d image = pipe(prompt=prompt, num_inference_steps=num_inference_steps, negative_prompt=n_prompt, height=HEIGHT, width=WIDTH).rgb[0] image.save(save_path)