Paul Rock
Initial commit
a33d530
raw
history blame
5.32 kB
import torch
import logging
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
# MODEL_NAME = "IlyaGusev/gigasaiga_lora"
# MODEL_NAME = "evilfreelancer/ruGPT-3.5-13B-lora"
# MODEL_NAME = "evilfreelancer/saiga_mistral_7b_128k_lora"
# MODEL_NAME = "./yarn_mistral_7b_128k"
MODEL_NAME = "./yarn_mistral_7b_128k_yakovlev"
DEFAULT_MESSAGE_TEMPLATE = "<s>{role}\n{content}</s>\n"
# DEFAULT_SYSTEM_PROMPT = """
# Ты — Saiga 2, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им.
# """
DEFAULT_SYSTEM_PROMPT = """
Ты - Иван Яковлевич Яковлев. Ты был просветителем, православным миссионером, российский педагогом, организатором народных школ, инспектором (руководителем) чувашских школ Казанского учебного округа (1875-1903) и созданной им Симбирской чувашской учительской школы (1868-1919). Я создал современный чувашский алфавит (1870-е годы) и учебники чувашского и русского языков для чувашей, был писателем, переводчиком, фольклористом. Действительный статский советник (1904).
"""
class Conversation:
def __init__(
self,
message_template=DEFAULT_MESSAGE_TEMPLATE,
system_prompt=DEFAULT_SYSTEM_PROMPT,
start_token_id=2,
# Bot token may be a list or single int
bot_token_id=10093, # yarn_mistral_7b_128k
# bot_token_id=46787, # rugpt35_13b
# int (amount of questions and answers) or None (unlimited)
history_limit=None,
):
self.logger = logging.getLogger('Conversation')
self.message_template = message_template
self.start_token_id = start_token_id
self.bot_token_id = bot_token_id
self.history_limit = history_limit
self.messages = [{
"role": "system",
"content": system_prompt
}]
def get_start_token_id(self):
return self.start_token_id
def get_bot_token_id(self):
return self.bot_token_id
def add_message(self, role, message):
self.messages.append({
"role": role,
"content": message
})
self.trim_history()
def add_user_message(self, message):
self.add_message("user", message)
def add_bot_message(self, message):
self.add_message("assistant", message)
def trim_history(self):
if self.history_limit is not None and len(self.messages) > self.history_limit + 1:
overflow = len(self.messages) - (self.history_limit + 1)
self.messages = [self.messages[0]] + self.messages[overflow + 1:] # remove old messages except system
def get_prompt(self, tokenizer):
final_text = ""
# print(self.messages)
for message in self.messages:
message_text = self.message_template.format(**message)
final_text += message_text
# Bot token id may be an array
if isinstance(self.bot_token_id, (list, tuple)):
final_text += tokenizer.decode([self.start_token_id] + self.bot_token_id)
else:
final_text += tokenizer.decode([self.start_token_id, self.bot_token_id])
return final_text.strip()
def generate(model, tokenizer, prompt, generation_config):
data = tokenizer(prompt, return_tensors="pt")
data = {k: v.to(model.device) for k, v in data.items()}
output_ids = model.generate(
**data,
max_length=10240,
generation_config=generation_config
)[0]
output_ids = output_ids[len(data["input_ids"][0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True)
return output.strip()
config = PeftConfig.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
use_flash_attention_2=True,
)
model = PeftModel.from_pretrained(
model,
MODEL_NAME,
torch_dtype=torch.float16
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
print(generation_config)
conversation = Conversation()
while True:
user_message = input("User: ")
# Reset chat command
if user_message.strip() == "/reset":
conversation = Conversation()
print("History reset completed!")
continue
# Skip empty messages from user
if user_message.strip() == "":
continue
conversation.add_user_message(user_message)
prompt = conversation.get_prompt(tokenizer)
output = generate(
model=model,
tokenizer=tokenizer,
prompt=prompt,
generation_config=generation_config
)
conversation.add_bot_message(output)
print("Bot:", output)
print()
print("==============================")
print()