execbat commited on
Commit
aa785f3
1 Parent(s): 64e8a28

Upload first PPO LunarLander-v2 trained agent from jupyter notebook

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: 225.43 +/- 93.41
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
 
28
 
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'runfile'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': False
36
- 'wandb_project_name': 'cleanRL'
37
- 'wandb_entity': None
38
- 'capture_video': False
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 500000
41
- 'learning_rate': 0.003
42
- 'num_envs': 16
43
- 'num_steps': 128
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.99
47
- 'gae_lambda': 0.95
48
- 'num_minibatches': 8
49
- 'update_epochs': 8
50
- 'norm_adv': True
51
- 'clip_coef': 0.5
52
- 'clip_vloss': True
53
- 'ent_coef': 0.02
54
- 'vf_coef': 0.2
55
- 'max_grad_norm': 0.2
56
- 'target_kl': None
57
- 'repo_id': 'execbat/ppo-LunarLander-v2'
58
- 'batch_size': 2048
59
- 'minibatch_size': 256}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 267.49 +/- 24.01
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
 
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ec8a2f48430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ec8a2f484c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ec8a2f48550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ec8a2f485e0>", "_build": "<function ActorCriticPolicy._build at 0x7ec8a2f48670>", "forward": "<function ActorCriticPolicy.forward at 0x7ec8a2f48700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ec8a2f48790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ec8a2f48820>", "_predict": "<function ActorCriticPolicy._predict at 0x7ec8a2f488b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ec8a2f48940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ec8a2f489d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ec8a2f48a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ec8a2f46f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722623412007138380, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAADNGLA8iWHOPgyPDb7EOI6+Q5jfvLQfv70AAAAAAAAAAGb66LzZqFw/t7McO+vm6r5GpPq8aiq3uwAAAAAAAAAAgMUWPXPEtj/E4jo/IVXIPebHzbxuul+9AAAAAAAAAABADsU97EKlPsq7A743eW2+Vd9GPQM6/LsAAAAAAAAAAM2geL32zEW6EGljPCWEpzwV66k6vviQPQAAgD8AAIA/zdhGvTZlVbxyPlu7hPYVPI5etz0z+wK9AACAPwAAgD+Alg0+xEbuPuplor2Tlde+J6ILPiukU74AAAAAAAAAAFb/Wb6oF4k/g/HSvuGTBL+y396+21BOvgAAAAAAAAAA4FlNvtQ27LwPS4a7FcgWurXHTT5V/7c6AACAPwAAgD/N4r89dYXAP571qD7XCB2+XrYbPdgUUD4AAAAAAAAAAJqdfrxasEU/Dy9KvUQa2b6cPRe99R8WvAAAAAAAAAAAcw9APmf3jj7V9jK+zxCVvnbuiT1Ibm49AAAAAAAAAADDN3y++3NTPzbbnr5Arc++o9m7vhbuPb4AAAAAAAAAAGbO5bsUEJS6iGzkO4Ooq7VGvK66M9OntAAAgD8AAIA/SqR5vtCfJD8mrTg9WTDWvl4JCb58WcM9AAAAAAAAAADNIf08r3/AP4KYgz70dko+STJ1vDvmkbwAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCSb433pOiMAWyUS/KMAXSUR0CSZ7lKK509dX2UKGgGR0BzNnOHFglXaAdNBwFoCEdAkmgjP4VRDXV9lChoBkdAc0uw9JSR82gHS+toCEdAkmhC8jAzpHV9lChoBkdAcMOb/Ot4iWgHS+poCEdAkmhREv0yxnV9lChoBkdAczFqjJuEVWgHS91oCEdAkmhvu1F6RnV9lChoBkdAcXK1He7+UGgHS/ZoCEdAkmjxhhH9WXV9lChoBkdAcroso2GZeGgHS/BoCEdAkmlyQT238XV9lChoBkdAcuNEmplz2mgHS/FoCEdAkmnRkqc3EXV9lChoBkdAbuZR77bcoGgHS9FoCEdAkmnSv9tMwnV9lChoBkdAcy8+zdDYy2gHS+NoCEdAkmpYYekpJHV9lChoBkdAca+pD/lyR2gHS9FoCEdAkmp9ShrWRXV9lChoBkdAcHAWSEDhcmgHS+hoCEdAkmqy1NQCS3V9lChoBkdAcoPwhnrY5GgHTQABaAhHQJJrMMb3oLZ1fZQoaAZHQHCa0knkT6BoB00FAWgIR0CSays+3YthdX2UKGgGR0Bxug6XBxgiaAdL4WgIR0CSa2kCV8kVdX2UKGgGR0BvY7t/nW8RaAdL5mgIR0CSa+pxWDHwdX2UKGgGR0BtzhgTh5xBaAdL4mgIR0CSbAjafzz3dX2UKGgGR0ByacQe3hGZaAdNIQFoCEdAkmwhIe5nUXV9lChoBkdAcVD+rlvIfmgHS+ZoCEdAkmw7pzLfUHV9lChoBkdAcYxHtnf2smgHS+ZoCEdAkm1R5C4SYnV9lChoBkdAcXoPBi1Aq2gHTUgBaAhHQJJtxbu+h5B1fZQoaAZHQG+BWmgrYoRoB0vQaAhHQJJt7XumaYx1fZQoaAZHQHFfXAZbY9RoB0v7aAhHQJJuJ5fMOgB1fZQoaAZHQHDD/ChvitJoB003AWgIR0CSbknDiwSrdX2UKGgGR0BtiXeizsyBaAdL4WgIR0CSbmaYeDFqdX2UKGgGR0BwGHhddE9daAdL5GgIR0CSbqydFvycdX2UKGgGR0BxOcA1ejVQaAdLz2gIR0CSbwr0rbxmdX2UKGgGR0Bvb0wYcebNaAdL9WgIR0CSb3ZJ04ipdX2UKGgGR0ByHmnn+yZ8aAdL0GgIR0CSb5uK4x1xdX2UKGgGR0Byu/GjsUqQaAdNCwFoCEdAkm/gN0/4ZnV9lChoBkdAcfZ2AoXsPmgHS+RoCEdAknBON1hb4nV9lChoBkdAcV21uivgWWgHS/doCEdAknBsw1zhgnV9lChoBkdAcP6hpxm03WgHS/loCEdAknCNovi97HV9lChoBkdAcb1/QjUutmgHTQYBaAhHQJJyKaNMoMN1fZQoaAZHQHGMnscABDJoB0vZaAhHQJJyZ+G47Rx1fZQoaAZHQG8M/7rLQoloB0v4aAhHQJJyhQJokAx1fZQoaAZHQHKFXRXwLE1oB0vjaAhHQJJyfRmbsnl1fZQoaAZHQHGrvMKTjedoB0vxaAhHQJJynUlRgqp1fZQoaAZHQHCiSZjQRf5oB00HAWgIR0CScqZSeiBYdX2UKGgGR0By1bP5YYBOaAdL3WgIR0CScse7+T/ydX2UKGgGR0BxczRu0kWzaAdL3WgIR0CScx/EfkmydX2UKGgGR0BwXEfSx7iRaAdL12gIR0CSeSRlpXZHdX2UKGgGR0BylfoPkJa8aAdL1GgIR0CSeTuGKyfMdX2UKGgGR0Bu1uEXcgyNaAdL1mgIR0CSegsHjZL7dX2UKGgGR0BzLST1TR6XaAdNPwNoCEdAknok03wTd3V9lChoBkdAcU3Y3eenRGgHS+1oCEdAknqSVv/BFnV9lChoBkdAceyQnhKlHmgHTQcBaAhHQJJ6xJPIn0F1fZQoaAZHQHFhLGWD6FdoB0vcaAhHQJJ7/2OAAhl1fZQoaAZHQG9H0YCQtBhoB0vUaAhHQJJ8PYK6WgR1fZQoaAZHQHDc6R+z+m5oB0vcaAhHQJJ8OMS9M9N1fZQoaAZHQHDVHbmEGqxoB0v3aAhHQJJ8UxUNrj51fZQoaAZHQG476YNRWLhoB0vxaAhHQJJ8gAjps411fZQoaAZHQG3ygFotcwBoB0v5aAhHQJJ8rXd0q6R1fZQoaAZHQHNVxhDw6QxoB0vdaAhHQJJ8zn4fwJB1fZQoaAZHQHDg4j4YaYNoB00JAWgIR0CSfRQYDTz/dX2UKGgGR0BwTzaYeDFqaAdL7WgIR0CSfX5bhWHUdX2UKGgGR0BvyriCJ40NaAdL1mgIR0CSfpJaq0dBdX2UKGgGR0Bz52ViWmgraAdNAgFoCEdAkn73dsSCe3V9lChoBkdAczfYb83uNWgHTRoBaAhHQJJ/V1s+FDh1fZQoaAZHQHOCp9/jKgZoB0v1aAhHQJJ/dAs052h1fZQoaAZHQHFe1s+FDfFoB0vXaAhHQJKALsv7FbV1fZQoaAZHQHGiExh2GItoB0vxaAhHQJKA8l2NedF1fZQoaAZHQHErnvMKTjhoB0vvaAhHQJKBA0ZWJad1fZQoaAZHQHM/uVopQUJoB0vpaAhHQJKBE/1QIld1fZQoaAZHQG9a9ic5Ke1oB0vgaAhHQJKBPgWJrL11fZQoaAZHQHPS5+H8CPpoB00BAWgIR0CSgUyNn5BUdX2UKGgGR0Bx7jY+Sr5qaAdL7mgIR0CSgc/XoTwldX2UKGgGR0Bh+bkp7TlUaAdN6ANoCEdAkoHfq9oN/nV9lChoBkdAca/Fg2IfsGgHS9toCEdAkoHlmFrVOXV9lChoBkdAc47m8/UvwmgHTQsBaAhHQJKB70163RZ1fZQoaAZHQHEtEq6OHWVoB0vPaAhHQJKDPihnJ1d1fZQoaAZHQHBmRoIv8IloB0vlaAhHQJKDT+aScLB1fZQoaAZHQG8SO+IuXeFoB0vXaAhHQJKDe4Cp3ot1fZQoaAZHQG927iyY5T9oB0vJaAhHQJKEkHVwxWV1fZQoaAZHQHNdkKqn3tdoB00BAWgIR0CShPXwLE1mdX2UKGgGR0ByyvFqBVdYaAdL52gIR0CShYkZJkGzdX2UKGgGR0BxgS09hZyNaAdNAAFoCEdAkoXX2/SH/XV9lChoBkdAcXJP1+RYBGgHTQQBaAhHQJKF3Q/oq1B1fZQoaAZHQHDgQOavzOJoB0vlaAhHQJKGD+NtIkJ1fZQoaAZHQHLxhnrY5DJoB00UAWgIR0CShmmfoRqXdX2UKGgGR0Bw0oxKxs2vaAdL+2gIR0CShpU6xPfsdX2UKGgGR0Bw9KsMiKR/aAdNBgFoCEdAkobTo2XLNnV9lChoBkdAcXBHv+fh/GgHTRwBaAhHQJKHK9sabWp1fZQoaAZHQHKZNJz1bq1oB0vxaAhHQJKH3M8ox591fZQoaAZHQHOvnFglWwNoB0v7aAhHQJKIHW5H3Dh1fZQoaAZHQHJFRf8dgfFoB0v7aAhHQJKISjTKDCh1fZQoaAZHQGi3J+tr9EVoB03oA2gIR0CSiFL7GecydX2UKGgGR0Bw6Wx8lXzUaAdL1GgIR0CSiJ56MR6GdX2UKGgGR0Bwl2/tY0VKaAdNBAFoCEdAkond92HLzXV9lChoBkdAcrKo9s7+1mgHS+hoCEdAkookTL4etHV9lChoBkdAbiW9Ba9samgHS+doCEdAkopXuRcNY3V9lChoBkdAcsKwblzU7WgHTQMBaAhHQJKKaPkq+al1fZQoaAZHQHGQKK508vFoB0vpaAhHQJKK3/cWTHN1fZQoaAZHQHHBdsWO6upoB00AAWgIR0CSiyrMC9ytdX2UKGgGR0BxS0pF1B+naAdL8mgIR0CSi1GxD9fkdX2UKGgGR0BzYte/pMYeaAdNJgFoCEdAkothybQTmHV9lChoBkdAcYxoS+QEIWgHS+loCEdAkouA9/z8QHV9lChoBkdARrmejEehf2gHS79oCEdAkouvTCtRvXV9lChoBkdAZ1U/TspobmgHTegDaAhHQJKL4oBq9Gt1fZQoaAZHQHD9aZlWfbtoB0viaAhHQJKMB5a/yoZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZi9ob21lL2V2Z2VuaWkvYW5hY29uZGEzL2VudnMvaHVnZ2luZ2ZhY2UvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZi9ob21lL2V2Z2VuaWkvYW5hY29uZGEzL2VudnMvaHVnZ2luZ2ZhY2UvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZi9ob21lL2V2Z2VuaWkvYW5hY29uZGEzL2VudnMvaHVnZ2luZ2ZhY2UvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZi9ob21lL2V2Z2VuaWkvYW5hY29uZGEzL2VudnMvaHVnZ2luZ2ZhY2UvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.5.0-44-generic-x86_64-with-glibc2.35 # 44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Jun 18 14:36:16 UTC 2", "Python": "3.9.18", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "2.0.1", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2ffe099645a0c08a8036f3532844b02d5fbd197f0c6b0b9059c9aac4c94a0bd
3
+ size 148093
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ec8a2f48430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ec8a2f484c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ec8a2f48550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ec8a2f485e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ec8a2f48670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ec8a2f48700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ec8a2f48790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ec8a2f48820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ec8a2f488b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ec8a2f48940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ec8a2f489d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ec8a2f48a60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ec8a2f46f80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 2015232,
25
+ "_total_timesteps": 2000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1722623412007138380,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAADNGLA8iWHOPgyPDb7EOI6+Q5jfvLQfv70AAAAAAAAAAGb66LzZqFw/t7McO+vm6r5GpPq8aiq3uwAAAAAAAAAAgMUWPXPEtj/E4jo/IVXIPebHzbxuul+9AAAAAAAAAABADsU97EKlPsq7A743eW2+Vd9GPQM6/LsAAAAAAAAAAM2geL32zEW6EGljPCWEpzwV66k6vviQPQAAgD8AAIA/zdhGvTZlVbxyPlu7hPYVPI5etz0z+wK9AACAPwAAgD+Alg0+xEbuPuplor2Tlde+J6ILPiukU74AAAAAAAAAAFb/Wb6oF4k/g/HSvuGTBL+y396+21BOvgAAAAAAAAAA4FlNvtQ27LwPS4a7FcgWurXHTT5V/7c6AACAPwAAgD/N4r89dYXAP571qD7XCB2+XrYbPdgUUD4AAAAAAAAAAJqdfrxasEU/Dy9KvUQa2b6cPRe99R8WvAAAAAAAAAAAcw9APmf3jj7V9jK+zxCVvnbuiT1Ibm49AAAAAAAAAADDN3y++3NTPzbbnr5Arc++o9m7vhbuPb4AAAAAAAAAAGbO5bsUEJS6iGzkO4Ooq7VGvK66M9OntAAAgD8AAIA/SqR5vtCfJD8mrTg9WTDWvl4JCb58WcM9AAAAAAAAAADNIf08r3/AP4KYgz70dko+STJ1vDvmkbwAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.007616000000000067,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV/QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCSb433pOiMAWyUS/KMAXSUR0CSZ7lKK509dX2UKGgGR0BzNnOHFglXaAdNBwFoCEdAkmgjP4VRDXV9lChoBkdAc0uw9JSR82gHS+toCEdAkmhC8jAzpHV9lChoBkdAcMOb/Ot4iWgHS+poCEdAkmhREv0yxnV9lChoBkdAczFqjJuEVWgHS91oCEdAkmhvu1F6RnV9lChoBkdAcXK1He7+UGgHS/ZoCEdAkmjxhhH9WXV9lChoBkdAcroso2GZeGgHS/BoCEdAkmlyQT238XV9lChoBkdAcuNEmplz2mgHS/FoCEdAkmnRkqc3EXV9lChoBkdAbuZR77bcoGgHS9FoCEdAkmnSv9tMwnV9lChoBkdAcy8+zdDYy2gHS+NoCEdAkmpYYekpJHV9lChoBkdAca+pD/lyR2gHS9FoCEdAkmp9ShrWRXV9lChoBkdAcHAWSEDhcmgHS+hoCEdAkmqy1NQCS3V9lChoBkdAcoPwhnrY5GgHTQABaAhHQJJrMMb3oLZ1fZQoaAZHQHCa0knkT6BoB00FAWgIR0CSays+3YthdX2UKGgGR0Bxug6XBxgiaAdL4WgIR0CSa2kCV8kVdX2UKGgGR0BvY7t/nW8RaAdL5mgIR0CSa+pxWDHwdX2UKGgGR0BtzhgTh5xBaAdL4mgIR0CSbAjafzz3dX2UKGgGR0ByacQe3hGZaAdNIQFoCEdAkmwhIe5nUXV9lChoBkdAcVD+rlvIfmgHS+ZoCEdAkmw7pzLfUHV9lChoBkdAcYxHtnf2smgHS+ZoCEdAkm1R5C4SYnV9lChoBkdAcXoPBi1Aq2gHTUgBaAhHQJJtxbu+h5B1fZQoaAZHQG+BWmgrYoRoB0vQaAhHQJJt7XumaYx1fZQoaAZHQHFfXAZbY9RoB0v7aAhHQJJuJ5fMOgB1fZQoaAZHQHDD/ChvitJoB003AWgIR0CSbknDiwSrdX2UKGgGR0BtiXeizsyBaAdL4WgIR0CSbmaYeDFqdX2UKGgGR0BwGHhddE9daAdL5GgIR0CSbqydFvycdX2UKGgGR0BxOcA1ejVQaAdLz2gIR0CSbwr0rbxmdX2UKGgGR0Bvb0wYcebNaAdL9WgIR0CSb3ZJ04ipdX2UKGgGR0ByHmnn+yZ8aAdL0GgIR0CSb5uK4x1xdX2UKGgGR0Byu/GjsUqQaAdNCwFoCEdAkm/gN0/4ZnV9lChoBkdAcfZ2AoXsPmgHS+RoCEdAknBON1hb4nV9lChoBkdAcV21uivgWWgHS/doCEdAknBsw1zhgnV9lChoBkdAcP6hpxm03WgHS/loCEdAknCNovi97HV9lChoBkdAcb1/QjUutmgHTQYBaAhHQJJyKaNMoMN1fZQoaAZHQHGMnscABDJoB0vZaAhHQJJyZ+G47Rx1fZQoaAZHQG8M/7rLQoloB0v4aAhHQJJyhQJokAx1fZQoaAZHQHKFXRXwLE1oB0vjaAhHQJJyfRmbsnl1fZQoaAZHQHGrvMKTjedoB0vxaAhHQJJynUlRgqp1fZQoaAZHQHCiSZjQRf5oB00HAWgIR0CScqZSeiBYdX2UKGgGR0By1bP5YYBOaAdL3WgIR0CScse7+T/ydX2UKGgGR0BxczRu0kWzaAdL3WgIR0CScx/EfkmydX2UKGgGR0BwXEfSx7iRaAdL12gIR0CSeSRlpXZHdX2UKGgGR0BylfoPkJa8aAdL1GgIR0CSeTuGKyfMdX2UKGgGR0Bu1uEXcgyNaAdL1mgIR0CSegsHjZL7dX2UKGgGR0BzLST1TR6XaAdNPwNoCEdAknok03wTd3V9lChoBkdAcU3Y3eenRGgHS+1oCEdAknqSVv/BFnV9lChoBkdAceyQnhKlHmgHTQcBaAhHQJJ6xJPIn0F1fZQoaAZHQHFhLGWD6FdoB0vcaAhHQJJ7/2OAAhl1fZQoaAZHQG9H0YCQtBhoB0vUaAhHQJJ8PYK6WgR1fZQoaAZHQHDc6R+z+m5oB0vcaAhHQJJ8OMS9M9N1fZQoaAZHQHDVHbmEGqxoB0v3aAhHQJJ8UxUNrj51fZQoaAZHQG476YNRWLhoB0vxaAhHQJJ8gAjps411fZQoaAZHQG3ygFotcwBoB0v5aAhHQJJ8rXd0q6R1fZQoaAZHQHNVxhDw6QxoB0vdaAhHQJJ8zn4fwJB1fZQoaAZHQHDg4j4YaYNoB00JAWgIR0CSfRQYDTz/dX2UKGgGR0BwTzaYeDFqaAdL7WgIR0CSfX5bhWHUdX2UKGgGR0BvyriCJ40NaAdL1mgIR0CSfpJaq0dBdX2UKGgGR0Bz52ViWmgraAdNAgFoCEdAkn73dsSCe3V9lChoBkdAczfYb83uNWgHTRoBaAhHQJJ/V1s+FDh1fZQoaAZHQHOCp9/jKgZoB0v1aAhHQJJ/dAs052h1fZQoaAZHQHFe1s+FDfFoB0vXaAhHQJKALsv7FbV1fZQoaAZHQHGiExh2GItoB0vxaAhHQJKA8l2NedF1fZQoaAZHQHErnvMKTjhoB0vvaAhHQJKBA0ZWJad1fZQoaAZHQHM/uVopQUJoB0vpaAhHQJKBE/1QIld1fZQoaAZHQG9a9ic5Ke1oB0vgaAhHQJKBPgWJrL11fZQoaAZHQHPS5+H8CPpoB00BAWgIR0CSgUyNn5BUdX2UKGgGR0Bx7jY+Sr5qaAdL7mgIR0CSgc/XoTwldX2UKGgGR0Bh+bkp7TlUaAdN6ANoCEdAkoHfq9oN/nV9lChoBkdAca/Fg2IfsGgHS9toCEdAkoHlmFrVOXV9lChoBkdAc47m8/UvwmgHTQsBaAhHQJKB70163RZ1fZQoaAZHQHEtEq6OHWVoB0vPaAhHQJKDPihnJ1d1fZQoaAZHQHBmRoIv8IloB0vlaAhHQJKDT+aScLB1fZQoaAZHQG8SO+IuXeFoB0vXaAhHQJKDe4Cp3ot1fZQoaAZHQG927iyY5T9oB0vJaAhHQJKEkHVwxWV1fZQoaAZHQHNdkKqn3tdoB00BAWgIR0CShPXwLE1mdX2UKGgGR0ByyvFqBVdYaAdL52gIR0CShYkZJkGzdX2UKGgGR0BxgS09hZyNaAdNAAFoCEdAkoXX2/SH/XV9lChoBkdAcXJP1+RYBGgHTQQBaAhHQJKF3Q/oq1B1fZQoaAZHQHDgQOavzOJoB0vlaAhHQJKGD+NtIkJ1fZQoaAZHQHLxhnrY5DJoB00UAWgIR0CShmmfoRqXdX2UKGgGR0Bw0oxKxs2vaAdL+2gIR0CShpU6xPfsdX2UKGgGR0Bw9KsMiKR/aAdNBgFoCEdAkobTo2XLNnV9lChoBkdAcXBHv+fh/GgHTRwBaAhHQJKHK9sabWp1fZQoaAZHQHKZNJz1bq1oB0vxaAhHQJKH3M8ox591fZQoaAZHQHOvnFglWwNoB0v7aAhHQJKIHW5H3Dh1fZQoaAZHQHJFRf8dgfFoB0v7aAhHQJKISjTKDCh1fZQoaAZHQGi3J+tr9EVoB03oA2gIR0CSiFL7GecydX2UKGgGR0Bw6Wx8lXzUaAdL1GgIR0CSiJ56MR6GdX2UKGgGR0Bwl2/tY0VKaAdNBAFoCEdAkond92HLzXV9lChoBkdAcrKo9s7+1mgHS+hoCEdAkookTL4etHV9lChoBkdAbiW9Ba9samgHS+doCEdAkopXuRcNY3V9lChoBkdAcsKwblzU7WgHTQMBaAhHQJKKaPkq+al1fZQoaAZHQHGQKK508vFoB0vpaAhHQJKK3/cWTHN1fZQoaAZHQHHBdsWO6upoB00AAWgIR0CSiyrMC9ytdX2UKGgGR0BxS0pF1B+naAdL8mgIR0CSi1GxD9fkdX2UKGgGR0BzYte/pMYeaAdNJgFoCEdAkothybQTmHV9lChoBkdAcYxoS+QEIWgHS+loCEdAkouA9/z8QHV9lChoBkdARrmejEehf2gHS79oCEdAkouvTCtRvXV9lChoBkdAZ1U/TspobmgHTegDaAhHQJKL4oBq9Gt1fZQoaAZHQHD9aZlWfbtoB0viaAhHQJKMB5a/yoZ1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 492,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV4gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZi9ob21lL2V2Z2VuaWkvYW5hY29uZGEzL2VudnMvaHVnZ2luZ2ZhY2UvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZi9ob21lL2V2Z2VuaWkvYW5hY29uZGEzL2VudnMvaHVnZ2luZ2ZhY2UvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV4gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZi9ob21lL2V2Z2VuaWkvYW5hY29uZGEzL2VudnMvaHVnZ2luZ2ZhY2UvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZi9ob21lL2V2Z2VuaWkvYW5hY29uZGEzL2VudnMvaHVnZ2luZ2ZhY2UvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43dc672ca805c3053d3fa9cebbfefdcf43317d5647a266c6971205f3feca8b1d
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be3e2c4a99d76f0d4e7914337ae074702d304aa2d80a08ddfef075c47540bbfe
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.5.0-44-generic-x86_64-with-glibc2.35 # 44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Jun 18 14:36:16 UTC 2
2
+ - Python: 3.9.18
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 2.0.1
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.26.2
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": 225.42584063115117, "std_reward": 93.41081360073, "n_evaluation_episodes": 10, "eval_datetime": "2024-07-21T15:28:11.625149"}
 
1
+ {"mean_reward": 267.48730028318096, "std_reward": 24.012976643316573, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-02T20:01:00.648096"}