File size: 4,995 Bytes
cf79cce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
[paths]
train = "assets/clausecat/train.spacy"
dev = "assets/clausecat/dev.spacy"
vectors = ${paths.ner_model}
init_tok2vec = "assets/pretrained_weights_clausecat.bin"
ner_model = "training/ner/config_tok2vec/model-best"
[system]
gpu_allocator = "pytorch"
seed = 0
[nlp]
lang = "en"
pipeline = ["sentencizer","tok2vec","ner","benepar","segmentation","clausecat","aggregation"]
batch_size = 128
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
[components]
[components.aggregation]
factory = "healthsea.aggregation.v1"
[components.benepar]
factory = "benepar"
disable_tagger = false
model = "benepar_en3"
subbatch_max_tokens = 500
[components.clausecat]
factory = "healthsea.clausecat.v1"
threshold = 0.5
[components.clausecat.model]
@architectures = "healthsea.clausecat_model.v1"
blinder = {"@layers":"healthsea.blinder.v1"}
[components.clausecat.model.textcat]
@architectures = "spacy.TextCatEnsemble.v2"
nO = null
[components.clausecat.model.textcat.linear_model]
@architectures = "spacy.TextCatBOW.v2"
exclusive_classes = true
ngram_size = 1
no_output_layer = false
nO = null
[components.clausecat.model.textcat.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[components.clausecat.model.textcat.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 64
rows = [2000,2000,1000,1000,1000,1000]
attrs = ["ORTH","LOWER","PREFIX","SUFFIX","SHAPE","ID"]
include_static_vectors = false
[components.clausecat.model.textcat.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${components.clausecat.model.textcat.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 2
[components.ner]
factory = "ner"
incorrect_spans_key = null
moves = null
scorer = {"@scorers":"spacy.ner_scorer.v1"}
update_with_oracle_cut_size = 100
[components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = false
nO = null
[components.ner.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = 256
upstream = "tok2vec"
[components.segmentation]
factory = "healthsea.segmentation.v1"
[components.sentencizer]
factory = "sentencizer"
overwrite = false
punct_chars = null
scorer = {"@scorers":"spacy.senter_scorer.v1"}
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v2"
[components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 256
attrs = ["ORTH","SHAPE"]
rows = [5000,2500]
include_static_vectors = true
[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 256
depth = 8
window_size = 1
maxout_pieces = 3
[corpora]
[corpora.dev]
@readers = "healthsea.clausecat_reader.v1"
path = ${paths.dev}
[corpora.train]
@readers = "healthsea.clausecat_reader.v1"
path = ${paths.train}
[training]
accumulate_gradient = 3
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
dropout = 0.1
patience = 1600
max_epochs = 0
max_steps = 20000
eval_frequency = 200
frozen_components = ["tok2vec","ner"]
annotating_components = []
before_to_disk = null
[training.batcher]
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2
get_length = null
[training.batcher.size]
@schedules = "compounding.v1"
start = 100
stop = 1000
compound = 1.001
t = 0.0
[training.logger]
@loggers = "spacy.ConsoleLogger.v1"
progress_bar = true
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 0.00000001
[training.optimizer.learn_rate]
@schedules = "warmup_linear.v1"
warmup_steps = 250
total_steps = 20000
initial_rate = 0.00005
[training.score_weights]
sents_f = null
sents_p = null
sents_r = null
ents_f = null
ents_p = null
ents_r = null
ents_per_type = null
cats_score = 1.0
cats_score_desc = null
cats_micro_p = null
cats_micro_r = null
cats_micro_f = null
cats_macro_p = null
cats_macro_r = null
cats_macro_f = null
cats_macro_auc = null
cats_f_per_type = null
cats_macro_auc_per_type = null
[pretraining]
max_epochs = 100
dropout = 0.2
n_save_every = null
n_save_epoch = 1
component = "clausecat"
layer = "tok2vec"
corpus = "corpora.pretrain"
[pretraining.batcher]
@batchers = "spacy.batch_by_words.v1"
size = 10000
discard_oversize = false
tolerance = 0.2
get_length = null
[pretraining.objective]
@architectures = "spacy.PretrainVectors.v1"
maxout_pieces = 3
hidden_size = 300
loss = "cosine"
[pretraining.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = true
eps = 0.00000001
learn_rate = 0.001
[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null
[initialize.components]
[initialize.tokenizer] |