--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - keithito/lj_speech model-index: - name: speecht5_finetuned_lj_speech results: [] pipeline_tag: text-to-speech --- # speecht5_finetuned_lj_speech This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the keithito/lj_speech dataset. It achieves the following results on the evaluation set: - Loss: 0.3772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.4519 | 1.3569 | 500 | 0.4035 | | 0.4307 | 2.7137 | 1000 | 0.3897 | | 0.4243 | 4.0706 | 1500 | 0.3842 | | 0.4154 | 5.4274 | 2000 | 0.3814 | | 0.4158 | 6.7843 | 2500 | 0.3793 | | 0.409 | 8.1411 | 3000 | 0.3783 | | 0.4112 | 9.4980 | 3500 | 0.3774 | | 0.4135 | 10.8548 | 4000 | 0.3772 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0