Upload PPO LunarLander-v2 trained agent
Browse files- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 277.28 +/- 19.19
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f92f492c290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f92f492c320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f92f492c3b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f92f492c440>", "_build": "<function ActorCriticPolicy._build at 0x7f92f492c4d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f92f492c560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f92f492c5f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f92f492c680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f92f492c710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f92f492c7a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f92f492c830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f92f49e9f90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661297433.3356118, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAHZj3mhfQ+Rjw0PKzezb485UM9SE8rvQAAAAAAAAAAmj6PPBQQjrrrtKM6RCGgNaHXhDqH2r25AACAPwAAgD+6wB8+h1QNPxDyqTsj1q6+DO+YPf/QEL0AAAAAAAAAAMC6o70u4so9jhU/Pspze77dScc8peTiPAAAAAAAAAAAAOoBPcqspz9S47g+34Inv5Aaezz2hjA+AAAAAAAAAADA1TQ+BKGePX/llL4/YIi+nPYCvZ47Z70AAAAAAAAAALsal7413gk/DuBSPlFWwL4v1yW+qN+EPgAAAAAAAAAAzUz4uggFlbx2vZs7f8UIvhNCBD76/Ns+AACAPwAAgD9zQdW9UBIyP7loMj0CMtu+r26dvRWKhT0AAAAAAAAAADMo/jz4dNU92vcTPsohmr4pd4494pDHuwAAAAAAAAAAzQycOY8maLx8Qyo97ycNvQyS/7rj2+28AACAPwAAgD8mI7g94TyWukmjgDhvDnEzOiZLupjMlLcAAIA/AAAAAPOrjb5+Zac+fZWzPiSsh75ipZ+9uFNoPgAAAAAAAAAAC+yJviLUKT8Q0i8+r/zMvtdZI759vAU+AAAAAAAAAACaFJO8Sn5yP9Z72Ly6lvK+f82Hvb4/vbwAAAAAAAAAAM0ea7zXp1i7sj33u//ejzzeGnW8bSZ3PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuDtrt12kX0CUhpRSlIwBbJRN6AOMAXSUR0Caw6FdLQHBdX2UKGgGaAloD0MIv7UTJSFucECUhpRSlGgVS+5oFkdAmsQpqqOtGXV9lChoBmgJaA9DCEDdQIH38mZAlIaUUpRoFU3oA2gWR0CaxdjbSJCTdX2UKGgGaAloD0MIEwznGub/b0CUhpRSlGgVTSABaBZHQJrGpsKsuFp1fZQoaAZoCWgPQwj9TShEQB5wQJSGlFKUaBVL3WgWR0Caxx3+MqBmdX2UKGgGaAloD0MIQdgpVk0PcECUhpRSlGgVTQ4BaBZHQJrH/wMH8j11fZQoaAZoCWgPQwjhQh7BDUlxQJSGlFKUaBVNaAFoFkdAmsjSaNMoMXV9lChoBmgJaA9DCPjFpSptW29AlIaUUpRoFU1HAWgWR0CayQ2Kl54XdX2UKGgGaAloD0MIi4wOSMI1ckCUhpRSlGgVS/loFkdAmsk7uc+aB3V9lChoBmgJaA9DCPfKvFXXS1BAlIaUUpRoFUuzaBZHQJrJppZfUnZ1fZQoaAZoCWgPQwhRa5p3XHZyQJSGlFKUaBVNAwFoFkdAmsn9p7CzknV9lChoBmgJaA9DCDTY1HnUrG9AlIaUUpRoFUv2aBZHQJrKvsiSq2l1fZQoaAZoCWgPQwh8Zd6qK1ByQJSGlFKUaBVNMQFoFkdAmssLAP/aQHV9lChoBmgJaA9DCEzirIiaCW5AlIaUUpRoFUvcaBZHQJrLbzCk43p1fZQoaAZoCWgPQwjR56OMOMBwQJSGlFKUaBVNPQFoFkdAmsuugL7XQXV9lChoBmgJaA9DCMjRHFl51WxAlIaUUpRoFU0jAWgWR0Cay75TqB3BdX2UKGgGaAloD0MIYJM16iH8Y0CUhpRSlGgVTegDaBZHQJrMHwmVqvh1fZQoaAZoCWgPQwib49wmnNFxQJSGlFKUaBVL52gWR0CazZSbH6uXdX2UKGgGaAloD0MI0AziAzuQU0CUhpRSlGgVS7doFkdAms4tYjjaPHV9lChoBmgJaA9DCORqZFda4G1AlIaUUpRoFU0lAWgWR0CazqHxz7uVdX2UKGgGaAloD0MIKuYg6OgockCUhpRSlGgVTSABaBZHQJrPkiu+yqx1fZQoaAZoCWgPQwiERxtH7CdzQJSGlFKUaBVLz2gWR0Caz77kGRmsdX2UKGgGaAloD0MI2xX6YBlZckCUhpRSlGgVS91oFkdAms/UeyRjjXV9lChoBmgJaA9DCNuF5jrN/HBAlIaUUpRoFU0TAWgWR0Caz/CT2WY4dX2UKGgGaAloD0MIHo1D/S4WcUCUhpRSlGgVS+JoFkdAmtD4VuaWonV9lChoBmgJaA9DCA1S8BRyW25AlIaUUpRoFUvnaBZHQJrRYC/47BB1fZQoaAZoCWgPQwh8LH3oQlZzQJSGlFKUaBVNMgFoFkdAmtF83uNPxnV9lChoBmgJaA9DCDVh+8mYR3BAlIaUUpRoFU1LAWgWR0Ca0o+QU5+6dX2UKGgGaAloD0MIRP0ubA02c0CUhpRSlGgVTQgBaBZHQJrSrwOOKfp1fZQoaAZoCWgPQwhksOJU6yxiQJSGlFKUaBVN6ANoFkdAmtK3c+JP7HV9lChoBmgJaA9DCObPtwXLhW9AlIaUUpRoFU0FAWgWR0Ca0tK02LpBdX2UKGgGaAloD0MIO44fKg1/c0CUhpRSlGgVS/5oFkdAmtMMBIWgvnV9lChoBmgJaA9DCI5cN6X8GXFAlIaUUpRoFU0VAWgWR0Ca0zhsZYPodX2UKGgGaAloD0MI7s1vmGgBc0CUhpRSlGgVS+1oFkdAmtP0HY6GQHV9lChoBmgJaA9DCMO7XMR3DkhAlIaUUpRoFUu1aBZHQJrUr/vOQhh1fZQoaAZoCWgPQwgHJ6JfW9VxQJSGlFKUaBVNBAFoFkdAmtWQoTfzjHV9lChoBmgJaA9DCDLmriVk5m5AlIaUUpRoFUvsaBZHQJrpC6e5Fw11fZQoaAZoCWgPQwji6CrdXUNyQJSGlFKUaBVL9mgWR0Ca6RJ9iMHbdX2UKGgGaAloD0MIcLTjhl+EcUCUhpRSlGgVTS4BaBZHQJrpQ2aUiY91fZQoaAZoCWgPQwjqdvaVx0VxQJSGlFKUaBVNEgFoFkdAmuntwzch1XV9lChoBmgJaA9DCAPrOH6o121AlIaUUpRoFUvmaBZHQJrqXM7lq8F1fZQoaAZoCWgPQwhPHhZqTRBtQJSGlFKUaBVL52gWR0Ca65FXJYDDdX2UKGgGaAloD0MIpHA9CleVcUCUhpRSlGgVTTEBaBZHQJrr8xJul411fZQoaAZoCWgPQwjcoPZbO5ZTQJSGlFKUaBVLrGgWR0Ca7E2pAD7qdX2UKGgGaAloD0MI4uXpXBH1cUCUhpRSlGgVTQYBaBZHQJrsVtVJcxF1fZQoaAZoCWgPQwjcoWExaixzQJSGlFKUaBVNAgFoFkdAmuxWycCo0nV9lChoBmgJaA9DCMjRHFn5DW5AlIaUUpRoFU0zAWgWR0Ca7GxsVLzxdX2UKGgGaAloD0MIv5tu2eFJckCUhpRSlGgVTQ4BaBZHQJrsyOWBz3h1fZQoaAZoCWgPQwiq1OyBVjZvQJSGlFKUaBVNEQFoFkdAmu0es90RvnV9lChoBmgJaA9DCL/wSpJnpnBAlIaUUpRoFU0RAWgWR0Ca7U2+fywwdX2UKGgGaAloD0MICTTY1Hn0K0CUhpRSlGgVS79oFkdAmu2TyjHn2nV9lChoBmgJaA9DCBcs1QU8/XJAlIaUUpRoFUv+aBZHQJrtnmaH9FZ1fZQoaAZoCWgPQwitGK4OQLVyQJSGlFKUaBVL8mgWR0Ca7yCLdepodX2UKGgGaAloD0MILxhcc0cNcUCUhpRSlGgVS/1oFkdAmu+XObAk9nV9lChoBmgJaA9DCBgjEoUW9m5AlIaUUpRoFUvqaBZHQJrwRd1MdtF1fZQoaAZoCWgPQwjk84qnXmxxQJSGlFKUaBVL/mgWR0Ca8FwwCbMHdX2UKGgGaAloD0MIzF1LyIeLbUCUhpRSlGgVTVMBaBZHQJrx07/4qPR1fZQoaAZoCWgPQwiR0QFJ2LdyQJSGlFKUaBVL3WgWR0Ca8fJd0JWvdX2UKGgGaAloD0MIFlCopw9AbUCUhpRSlGgVS/xoFkdAmvLl+d9Uj3V9lChoBmgJaA9DCNNmnIZoHXBAlIaUUpRoFU0MAWgWR0Ca819L6DXfdX2UKGgGaAloD0MICryTT494b0CUhpRSlGgVS+poFkdAmvOJqdpZfXV9lChoBmgJaA9DCApl4etrCnJAlIaUUpRoFU0uAWgWR0Ca86h4t6HCdX2UKGgGaAloD0MIuDzWjAx4cECUhpRSlGgVS/toFkdAmvPN43WFvnV9lChoBmgJaA9DCFtgj4mUQHNAlIaUUpRoFU0MAWgWR0Ca8+oePq9odX2UKGgGaAloD0MIRYMUPIWyckCUhpRSlGgVTQgBaBZHQJr0xl7MPjJ1fZQoaAZoCWgPQwh3uvPEc4dwQJSGlFKUaBVL0GgWR0Ca9RiJfpljdX2UKGgGaAloD0MIjxzpDAxWcUCUhpRSlGgVTRcBaBZHQJr1JWCEpRZ1fZQoaAZoCWgPQwjmPjkKEAhxQJSGlFKUaBVNSQFoFkdAmvU2l/H5rXV9lChoBmgJaA9DCPQxHxBoKG5AlIaUUpRoFU1jAWgWR0Ca9XB0ZFXrdX2UKGgGaAloD0MIRb3g01zIckCUhpRSlGgVS9xoFkdAmvXLM9r433V9lChoBmgJaA9DCGRA9np3HXNAlIaUUpRoFU0NAWgWR0Ca94yLQ5WBdX2UKGgGaAloD0MIxcpo5LOuc0CUhpRSlGgVS+xoFkdAmvgdWp6yB3V9lChoBmgJaA9DCMxFfCemEXBAlIaUUpRoFUv7aBZHQJr4oeLehwl1fZQoaAZoCWgPQwiR8pNqH1pyQJSGlFKUaBVNNwFoFkdAmvjQBPsRhHV9lChoBmgJaA9DCCqOA6+WsnFAlIaUUpRoFUvXaBZHQJr5RvHcUM51fZQoaAZoCWgPQwhDyk+qPYdzQJSGlFKUaBVL7GgWR0Ca+faBqbjMdX2UKGgGaAloD0MImsx4W6lbc0CUhpRSlGgVTRUBaBZHQJr6MbFS88N1fZQoaAZoCWgPQwjRlJ1+0CtxQJSGlFKUaBVNCAFoFkdAmvpkk4WDYnV9lChoBmgJaA9DCLH34ov2c3FAlIaUUpRoFU0ZAWgWR0Ca+rAM2FWXdX2UKGgGaAloD0MIzehHwymIcECUhpRSlGgVTRsBaBZHQJr69+NLlFN1fZQoaAZoCWgPQwjexmZHav5wQJSGlFKUaBVL6GgWR0Ca+wGkvboKdX2UKGgGaAloD0MIHTuoxDUeckCUhpRSlGgVS/9oFkdAmvtC+lCTlnV9lChoBmgJaA9DCI4hADh20nJAlIaUUpRoFU0JAWgWR0Ca+9G9HtngdX2UKGgGaAloD0MIy2Wjc36wcUCUhpRSlGgVTSIBaBZHQJr8XksBhhJ1fZQoaAZoCWgPQwhAMbJkTkVwQJSGlFKUaBVNGAFoFkdAmvzTCgsbvXV9lChoBmgJaA9DCJIlcywvCHRAlIaUUpRoFU0yAWgWR0Ca/QVkMCtBdX2UKGgGaAloD0MIur4PB0lsckCUhpRSlGgVS+9oFkdAmv4TlDF6zHV9lChoBmgJaA9DCM0eaAUGtXFAlIaUUpRoFUvbaBZHQJr+NLFn7Hh1fZQoaAZoCWgPQwiygt+G2E1yQJSGlFKUaBVNFwFoFkdAmv6U8JUo8nV9lChoBmgJaA9DCE+uKZBZaHNAlIaUUpRoFUv7aBZHQJr+24axX4l1fZQoaAZoCWgPQwgr9pfdk5lNQJSGlFKUaBVLjWgWR0Ca/zgg5imVdX2UKGgGaAloD0MIYwrWOJsTcECUhpRSlGgVS/RoFkdAmv9GDYh+v3V9lChoBmgJaA9DCFWJsrfUUnFAlIaUUpRoFU0BAWgWR0CbAG8NQTEjdX2UKGgGaAloD0MIBygNNUopcUCUhpRSlGgVS/RoFkdAmwCZXU6PsHV9lChoBmgJaA9DCBDNPLmmpW9AlIaUUpRoFU0DAWgWR0CbALF7Uoa2dX2UKGgGaAloD0MIj1Tf+cUOc0CUhpRSlGgVTRsBaBZHQJsA6FIuoP11fZQoaAZoCWgPQwj7Bbth26BxQJSGlFKUaBVL6WgWR0CbAO+Vkc0cdX2UKGgGaAloD0MIP6iLFAopcUCUhpRSlGgVTQ0BaBZHQJsBf3Zf2K51fZQoaAZoCWgPQwiet7HZUWNyQJSGlFKUaBVNHgFoFkdAmwHsWweNk3V9lChoBmgJaA9DCLubpzokvXJAlIaUUpRoFUvzaBZHQJsCxIkJKJ51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09c471bce3112facae1fb12e78238f2833b6d035a947bc2e13984b99f2095259
|
3 |
+
size 147094
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f92f492c290>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f92f492c320>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f92f492c3b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f92f492c440>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f92f492c4d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f92f492c560>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f92f492c5f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f92f492c680>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f92f492c710>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f92f492c7a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f92f492c830>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f92f49e9f90>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1507328,
|
46 |
+
"_total_timesteps": 1500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1661297433.3356118,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAHZj3mhfQ+Rjw0PKzezb485UM9SE8rvQAAAAAAAAAAmj6PPBQQjrrrtKM6RCGgNaHXhDqH2r25AACAPwAAgD+6wB8+h1QNPxDyqTsj1q6+DO+YPf/QEL0AAAAAAAAAAMC6o70u4so9jhU/Pspze77dScc8peTiPAAAAAAAAAAAAOoBPcqspz9S47g+34Inv5Aaezz2hjA+AAAAAAAAAADA1TQ+BKGePX/llL4/YIi+nPYCvZ47Z70AAAAAAAAAALsal7413gk/DuBSPlFWwL4v1yW+qN+EPgAAAAAAAAAAzUz4uggFlbx2vZs7f8UIvhNCBD76/Ns+AACAPwAAgD9zQdW9UBIyP7loMj0CMtu+r26dvRWKhT0AAAAAAAAAADMo/jz4dNU92vcTPsohmr4pd4494pDHuwAAAAAAAAAAzQycOY8maLx8Qyo97ycNvQyS/7rj2+28AACAPwAAgD8mI7g94TyWukmjgDhvDnEzOiZLupjMlLcAAIA/AAAAAPOrjb5+Zac+fZWzPiSsh75ipZ+9uFNoPgAAAAAAAAAAC+yJviLUKT8Q0i8+r/zMvtdZI759vAU+AAAAAAAAAACaFJO8Sn5yP9Z72Ly6lvK+f82Hvb4/vbwAAAAAAAAAAM0ea7zXp1i7sj33u//ejzzeGnW8bSZ3PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.004885333333333408,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVUxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuDtrt12kX0CUhpRSlIwBbJRN6AOMAXSUR0Caw6FdLQHBdX2UKGgGaAloD0MIv7UTJSFucECUhpRSlGgVS+5oFkdAmsQpqqOtGXV9lChoBmgJaA9DCEDdQIH38mZAlIaUUpRoFU3oA2gWR0CaxdjbSJCTdX2UKGgGaAloD0MIEwznGub/b0CUhpRSlGgVTSABaBZHQJrGpsKsuFp1fZQoaAZoCWgPQwj9TShEQB5wQJSGlFKUaBVL3WgWR0Caxx3+MqBmdX2UKGgGaAloD0MIQdgpVk0PcECUhpRSlGgVTQ4BaBZHQJrH/wMH8j11fZQoaAZoCWgPQwjhQh7BDUlxQJSGlFKUaBVNaAFoFkdAmsjSaNMoMXV9lChoBmgJaA9DCPjFpSptW29AlIaUUpRoFU1HAWgWR0CayQ2Kl54XdX2UKGgGaAloD0MIi4wOSMI1ckCUhpRSlGgVS/loFkdAmsk7uc+aB3V9lChoBmgJaA9DCPfKvFXXS1BAlIaUUpRoFUuzaBZHQJrJppZfUnZ1fZQoaAZoCWgPQwhRa5p3XHZyQJSGlFKUaBVNAwFoFkdAmsn9p7CzknV9lChoBmgJaA9DCDTY1HnUrG9AlIaUUpRoFUv2aBZHQJrKvsiSq2l1fZQoaAZoCWgPQwh8Zd6qK1ByQJSGlFKUaBVNMQFoFkdAmssLAP/aQHV9lChoBmgJaA9DCEzirIiaCW5AlIaUUpRoFUvcaBZHQJrLbzCk43p1fZQoaAZoCWgPQwjR56OMOMBwQJSGlFKUaBVNPQFoFkdAmsuugL7XQXV9lChoBmgJaA9DCMjRHFl51WxAlIaUUpRoFU0jAWgWR0Cay75TqB3BdX2UKGgGaAloD0MIYJM16iH8Y0CUhpRSlGgVTegDaBZHQJrMHwmVqvh1fZQoaAZoCWgPQwib49wmnNFxQJSGlFKUaBVL52gWR0CazZSbH6uXdX2UKGgGaAloD0MI0AziAzuQU0CUhpRSlGgVS7doFkdAms4tYjjaPHV9lChoBmgJaA9DCORqZFda4G1AlIaUUpRoFU0lAWgWR0CazqHxz7uVdX2UKGgGaAloD0MIKuYg6OgockCUhpRSlGgVTSABaBZHQJrPkiu+yqx1fZQoaAZoCWgPQwiERxtH7CdzQJSGlFKUaBVLz2gWR0Caz77kGRmsdX2UKGgGaAloD0MI2xX6YBlZckCUhpRSlGgVS91oFkdAms/UeyRjjXV9lChoBmgJaA9DCNuF5jrN/HBAlIaUUpRoFU0TAWgWR0Caz/CT2WY4dX2UKGgGaAloD0MIHo1D/S4WcUCUhpRSlGgVS+JoFkdAmtD4VuaWonV9lChoBmgJaA9DCA1S8BRyW25AlIaUUpRoFUvnaBZHQJrRYC/47BB1fZQoaAZoCWgPQwh8LH3oQlZzQJSGlFKUaBVNMgFoFkdAmtF83uNPxnV9lChoBmgJaA9DCDVh+8mYR3BAlIaUUpRoFU1LAWgWR0Ca0o+QU5+6dX2UKGgGaAloD0MIRP0ubA02c0CUhpRSlGgVTQgBaBZHQJrSrwOOKfp1fZQoaAZoCWgPQwhksOJU6yxiQJSGlFKUaBVN6ANoFkdAmtK3c+JP7HV9lChoBmgJaA9DCObPtwXLhW9AlIaUUpRoFU0FAWgWR0Ca0tK02LpBdX2UKGgGaAloD0MIO44fKg1/c0CUhpRSlGgVS/5oFkdAmtMMBIWgvnV9lChoBmgJaA9DCI5cN6X8GXFAlIaUUpRoFU0VAWgWR0Ca0zhsZYPodX2UKGgGaAloD0MI7s1vmGgBc0CUhpRSlGgVS+1oFkdAmtP0HY6GQHV9lChoBmgJaA9DCMO7XMR3DkhAlIaUUpRoFUu1aBZHQJrUr/vOQhh1fZQoaAZoCWgPQwgHJ6JfW9VxQJSGlFKUaBVNBAFoFkdAmtWQoTfzjHV9lChoBmgJaA9DCDLmriVk5m5AlIaUUpRoFUvsaBZHQJrpC6e5Fw11fZQoaAZoCWgPQwji6CrdXUNyQJSGlFKUaBVL9mgWR0Ca6RJ9iMHbdX2UKGgGaAloD0MIcLTjhl+EcUCUhpRSlGgVTS4BaBZHQJrpQ2aUiY91fZQoaAZoCWgPQwjqdvaVx0VxQJSGlFKUaBVNEgFoFkdAmuntwzch1XV9lChoBmgJaA9DCAPrOH6o121AlIaUUpRoFUvmaBZHQJrqXM7lq8F1fZQoaAZoCWgPQwhPHhZqTRBtQJSGlFKUaBVL52gWR0Ca65FXJYDDdX2UKGgGaAloD0MIpHA9CleVcUCUhpRSlGgVTTEBaBZHQJrr8xJul411fZQoaAZoCWgPQwjcoPZbO5ZTQJSGlFKUaBVLrGgWR0Ca7E2pAD7qdX2UKGgGaAloD0MI4uXpXBH1cUCUhpRSlGgVTQYBaBZHQJrsVtVJcxF1fZQoaAZoCWgPQwjcoWExaixzQJSGlFKUaBVNAgFoFkdAmuxWycCo0nV9lChoBmgJaA9DCMjRHFn5DW5AlIaUUpRoFU0zAWgWR0Ca7GxsVLzxdX2UKGgGaAloD0MIv5tu2eFJckCUhpRSlGgVTQ4BaBZHQJrsyOWBz3h1fZQoaAZoCWgPQwiq1OyBVjZvQJSGlFKUaBVNEQFoFkdAmu0es90RvnV9lChoBmgJaA9DCL/wSpJnpnBAlIaUUpRoFU0RAWgWR0Ca7U2+fywwdX2UKGgGaAloD0MICTTY1Hn0K0CUhpRSlGgVS79oFkdAmu2TyjHn2nV9lChoBmgJaA9DCBcs1QU8/XJAlIaUUpRoFUv+aBZHQJrtnmaH9FZ1fZQoaAZoCWgPQwitGK4OQLVyQJSGlFKUaBVL8mgWR0Ca7yCLdepodX2UKGgGaAloD0MILxhcc0cNcUCUhpRSlGgVS/1oFkdAmu+XObAk9nV9lChoBmgJaA9DCBgjEoUW9m5AlIaUUpRoFUvqaBZHQJrwRd1MdtF1fZQoaAZoCWgPQwjk84qnXmxxQJSGlFKUaBVL/mgWR0Ca8FwwCbMHdX2UKGgGaAloD0MIzF1LyIeLbUCUhpRSlGgVTVMBaBZHQJrx07/4qPR1fZQoaAZoCWgPQwiR0QFJ2LdyQJSGlFKUaBVL3WgWR0Ca8fJd0JWvdX2UKGgGaAloD0MIFlCopw9AbUCUhpRSlGgVS/xoFkdAmvLl+d9Uj3V9lChoBmgJaA9DCNNmnIZoHXBAlIaUUpRoFU0MAWgWR0Ca819L6DXfdX2UKGgGaAloD0MICryTT494b0CUhpRSlGgVS+poFkdAmvOJqdpZfXV9lChoBmgJaA9DCApl4etrCnJAlIaUUpRoFU0uAWgWR0Ca86h4t6HCdX2UKGgGaAloD0MIuDzWjAx4cECUhpRSlGgVS/toFkdAmvPN43WFvnV9lChoBmgJaA9DCFtgj4mUQHNAlIaUUpRoFU0MAWgWR0Ca8+oePq9odX2UKGgGaAloD0MIRYMUPIWyckCUhpRSlGgVTQgBaBZHQJr0xl7MPjJ1fZQoaAZoCWgPQwh3uvPEc4dwQJSGlFKUaBVL0GgWR0Ca9RiJfpljdX2UKGgGaAloD0MIjxzpDAxWcUCUhpRSlGgVTRcBaBZHQJr1JWCEpRZ1fZQoaAZoCWgPQwjmPjkKEAhxQJSGlFKUaBVNSQFoFkdAmvU2l/H5rXV9lChoBmgJaA9DCPQxHxBoKG5AlIaUUpRoFU1jAWgWR0Ca9XB0ZFXrdX2UKGgGaAloD0MIRb3g01zIckCUhpRSlGgVS9xoFkdAmvXLM9r433V9lChoBmgJaA9DCGRA9np3HXNAlIaUUpRoFU0NAWgWR0Ca94yLQ5WBdX2UKGgGaAloD0MIxcpo5LOuc0CUhpRSlGgVS+xoFkdAmvgdWp6yB3V9lChoBmgJaA9DCMxFfCemEXBAlIaUUpRoFUv7aBZHQJr4oeLehwl1fZQoaAZoCWgPQwiR8pNqH1pyQJSGlFKUaBVNNwFoFkdAmvjQBPsRhHV9lChoBmgJaA9DCCqOA6+WsnFAlIaUUpRoFUvXaBZHQJr5RvHcUM51fZQoaAZoCWgPQwhDyk+qPYdzQJSGlFKUaBVL7GgWR0Ca+faBqbjMdX2UKGgGaAloD0MImsx4W6lbc0CUhpRSlGgVTRUBaBZHQJr6MbFS88N1fZQoaAZoCWgPQwjRlJ1+0CtxQJSGlFKUaBVNCAFoFkdAmvpkk4WDYnV9lChoBmgJaA9DCLH34ov2c3FAlIaUUpRoFU0ZAWgWR0Ca+rAM2FWXdX2UKGgGaAloD0MIzehHwymIcECUhpRSlGgVTRsBaBZHQJr69+NLlFN1fZQoaAZoCWgPQwjexmZHav5wQJSGlFKUaBVL6GgWR0Ca+wGkvboKdX2UKGgGaAloD0MIHTuoxDUeckCUhpRSlGgVS/9oFkdAmvtC+lCTlnV9lChoBmgJaA9DCI4hADh20nJAlIaUUpRoFU0JAWgWR0Ca+9G9HtngdX2UKGgGaAloD0MIy2Wjc36wcUCUhpRSlGgVTSIBaBZHQJr8XksBhhJ1fZQoaAZoCWgPQwhAMbJkTkVwQJSGlFKUaBVNGAFoFkdAmvzTCgsbvXV9lChoBmgJaA9DCJIlcywvCHRAlIaUUpRoFU0yAWgWR0Ca/QVkMCtBdX2UKGgGaAloD0MIur4PB0lsckCUhpRSlGgVS+9oFkdAmv4TlDF6zHV9lChoBmgJaA9DCM0eaAUGtXFAlIaUUpRoFUvbaBZHQJr+NLFn7Hh1fZQoaAZoCWgPQwiygt+G2E1yQJSGlFKUaBVNFwFoFkdAmv6U8JUo8nV9lChoBmgJaA9DCE+uKZBZaHNAlIaUUpRoFUv7aBZHQJr+24axX4l1fZQoaAZoCWgPQwgr9pfdk5lNQJSGlFKUaBVLjWgWR0Ca/zgg5imVdX2UKGgGaAloD0MIYwrWOJsTcECUhpRSlGgVS/RoFkdAmv9GDYh+v3V9lChoBmgJaA9DCFWJsrfUUnFAlIaUUpRoFU0BAWgWR0CbAG8NQTEjdX2UKGgGaAloD0MIBygNNUopcUCUhpRSlGgVS/RoFkdAmwCZXU6PsHV9lChoBmgJaA9DCBDNPLmmpW9AlIaUUpRoFU0DAWgWR0CbALF7Uoa2dX2UKGgGaAloD0MIj1Tf+cUOc0CUhpRSlGgVTRsBaBZHQJsA6FIuoP11fZQoaAZoCWgPQwj7Bbth26BxQJSGlFKUaBVL6WgWR0CbAO+Vkc0cdX2UKGgGaAloD0MIP6iLFAopcUCUhpRSlGgVTQ0BaBZHQJsBf3Zf2K51fZQoaAZoCWgPQwiet7HZUWNyQJSGlFKUaBVNHgFoFkdAmwHsWweNk3V9lChoBmgJaA9DCLubpzokvXJAlIaUUpRoFUvzaBZHQJsCxIkJKJ51ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 368,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dde6e2563002ee4f8447cf18aec272160fe555bab3270dae5a259bc7d189b1c
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e7b9fb434795e4208968da2543804316c69232c1d1cf7a33b8a791030668935
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (223 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 277.2824859032735, "std_reward": 19.186373988493298, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-24T00:26:08.580439"}
|