patrickvonplaten commited on
Commit
4578d4e
·
1 Parent(s): aba621b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -1
README.md CHANGED
@@ -9,4 +9,55 @@ tags:
9
  license: apache-2.0
10
  ---
11
 
12
- To fill...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  license: apache-2.0
10
  ---
11
 
12
+ ## Evaluation on Common Voice NL Test
13
+
14
+ ```python
15
+ import torchaudio
16
+ from datasets import load_dataset, load_metric
17
+ from transformers import (
18
+ Wav2Vec2ForCTC,
19
+ Wav2Vec2Processor,
20
+ )
21
+ import torch
22
+ import re
23
+ import sys
24
+
25
+ model_name = "facebook/wav2vec2-large-xlsr-53-dutch"
26
+ device = "cuda"
27
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"]' # noqa: W605
28
+
29
+ model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
30
+ processor = Wav2Vec2Processor.from_pretrained(model_name)
31
+
32
+ ds = load_dataset("common_voice", "nl", split="test", data_dir="./cv-corpus-6.1-2020-12-11")
33
+
34
+ resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
35
+
36
+ def map_to_array(batch):
37
+ speech, _ = torchaudio.load(batch["path"])
38
+ batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
39
+ batch["sampling_rate"] = resampler.new_freq
40
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
41
+ return batch
42
+
43
+ ds = ds.map(map_to_array)
44
+
45
+
46
+ def map_to_pred(batch):
47
+ features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
48
+ input_values = features.input_values.to(device)
49
+ attention_mask = features.attention_mask.to(device)
50
+ with torch.no_grad():
51
+ logits = model(input_values, attention_mask=attention_mask).logits
52
+ pred_ids = torch.argmax(logits, dim=-1)
53
+ batch["predicted"] = processor.batch_decode(pred_ids)
54
+ batch["target"] = batch["sentence"]
55
+ return batch
56
+
57
+ result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys()))
58
+
59
+ wer = load_metric("wer")
60
+ print(wer.compute(predictions=result["predicted"], references=result["target"]))
61
+ ```
62
+
63
+ **Result**: 21.1 %