File size: 1,844 Bytes
cb524a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3f6dca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
language: nl
datasets:
- common_voice
tags:
- speech
- audio
- automatic-speech-recognition
license: apache-2.0
---

## Evaluation on Common Voice PL Test

```python
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
    Wav2Vec2ForCTC,
    Wav2Vec2Processor,
)
import torch
import re
import sys

model_name = "facebook/wav2vec2-large-xlsr-53-polish"
device = "cuda"
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"]'  # noqa: W605

model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(model_name)

ds = load_dataset("common_voice", "pl", split="test", data_dir="./cv-corpus-6.1-2020-12-11")

resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)

def map_to_array(batch):
    speech, _ = torchaudio.load(batch["path"])
    batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
    batch["sampling_rate"] = resampler.new_freq
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
    return batch

ds = ds.map(map_to_array)


def map_to_pred(batch):
    features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
    input_values = features.input_values.to(device)
    attention_mask = features.attention_mask.to(device)
    with torch.no_grad():
        logits = model(input_values, attention_mask=attention_mask).logits
    pred_ids = torch.argmax(logits, dim=-1)
    batch["predicted"] = processor.batch_decode(pred_ids)
    batch["target"] = batch["sentence"]
    return batch

result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys()))

wer = load_metric("wer")
print(wer.compute(predictions=result["predicted"], references=result["target"]))
```

**Result**: 24.6 %