File size: 6,333 Bytes
fc8b3e0
402bde6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc8b3e0
 
 
 
 
 
 
 
468af21
fc8b3e0
 
e44e571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc8b3e0
 
4f76edf
9883158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496276d
9883158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e821b
9883158
 
a4e821b
9883158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
language: 
- multilingual
- fr
- de
- es
- ca
- it
- ru
- zh
- pt
- fa
- et
- mn
- nl
- tr
- ar
- sv
- lv
- sl
- ta
- ja
- id
- cy
- en
datasets:
- common_voice
- multilingual_librispeech
- covost2
tags:
- speech
- xls_r
- automatic-speech-recognition
- xls_r_translation
pipeline_tag: automatic-speech-recognition
license: apache-2.0
widget:
- example_title: Swedish
  src: https://cdn-media.huggingface.co/speech_samples/cv_swedish_1.mp3
- example_title: Arabic
  src: https://cdn-media.huggingface.co/speech_samples/common_voice_ar_19058308.mp3
- example_title: Russian
  src: https://cdn-media.huggingface.co/speech_samples/common_voice_ru_18849022.mp3
- example_title: German
  src: https://cdn-media.huggingface.co/speech_samples/common_voice_de_17284683.mp3
- example_title: French
  src: https://cdn-media.huggingface.co/speech_samples/common_voice_fr_17299386.mp3
- example_title: Indonesian
  src: https://cdn-media.huggingface.co/speech_samples/common_voice_id_19051309.mp3
- example_title: Italian
  src: https://cdn-media.huggingface.co/speech_samples/common_voice_it_17415776.mp3
- example_title: Japanese
  src: https://cdn-media.huggingface.co/speech_samples/common_voice_ja_19482488.mp3
- example_title: Mongolian
  src: https://cdn-media.huggingface.co/speech_samples/common_voice_mn_18565396.mp3
- example_title: Dutch
  src: https://cdn-media.huggingface.co/speech_samples/common_voice_nl_17691471.mp3
- example_title: Russian
  src: https://cdn-media.huggingface.co/speech_samples/common_voice_ru_18849022.mp3
- example_title: Turkish
  src: https://cdn-media.huggingface.co/speech_samples/common_voice_tr_17341280.mp3
- example_title: Catalan
  src: https://cdn-media.huggingface.co/speech_samples/common_voice_ca_17367522.mp3
- example_title: English
  src: https://cdn-media.huggingface.co/speech_samples/common_voice_en_18301577.mp3
- example_title: Dutch
  src: https://cdn-media.huggingface.co/speech_samples/common_voice_nl_17691471.mp3
---

# Wav2Vec2-XLS-R-2B-22-16 (XLS-R-Any-to-Any)

Facebook's Wav2Vec2 XLS-R fine-tuned for **Speech Translation.**

![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/xls_r.png)

This is a [SpeechEncoderDecoderModel](https://huggingface.co/transformers/model_doc/speechencoderdecoder.html) model. 
The encoder was warm-started from the [**`facebook/wav2vec2-xls-r-2b`**](https://huggingface.co/facebook/wav2vec2-xls-r-2b) checkpoint and
the decoder from the [**`facebook/mbart-large-50`**](https://huggingface.co/facebook/mbart-large-50) checkpoint.
Consequently, the encoder-decoder model was fine-tuned on `{input_lang}` -> `{output_lang}` translation pairs
of the [Covost2 dataset](https://huggingface.co/datasets/covost2).

The model can translate from the following spoken languages `{input_lang}` to the following written languages `{output_lang}`:

`{input_lang}` -> `{output_lang}`

with `{input_lang}` one of:

{`en`, `fr`, `de`, `es`, `ca`, `it`, `ru`, `zh-CN`, `pt`, `fa`, `et`, `mn`, `nl`, `tr`, `ar`, `sv-SE`, `lv`, `sl`, `ta`, `ja`, `id`, `cy`}

and `{output_lang}`:

{`en`, `de`, `tr`, `fa`, `sv-SE`, `mn`, `zh-CN`, `cy`, `ca`, `sl`, `et`, `id`, `ar`, `ta`, `lv`, `ja`}

## Usage

### Demo

The model can be tested on [**this space**](https://huggingface.co/spaces/facebook/XLS-R-2B-22-16). 
You can select the target language, record some audio in any of the above mentioned input languages, 
and then sit back and see how well the checkpoint can translate the input.

### Example 

As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the
transcripts by passing the speech features to the model.

You can use the model directly via the ASR pipeline. By default, the checkpoint will 
translate spoken English to written German. To change the written target language, 
you need to pass the correct `forced_bos_token_id` to `generate(...)` to condition 
the decoder on the correct target language. 

To select the correct `forced_bos_token_id` given your choosen language id, please make use 
of the following mapping:

```python
MAPPING = {
    "en": 250004,
    "de": 250003,
    "tr": 250023,
    "fa": 250029,
    "sv": 250042,
    "mn": 250037,
    "zh": 250025,
    "cy": 250007,
    "ca": 250005,
    "sl": 250052,
    "et": 250006,
    "id": 250032,
    "ar": 250001,
    "ta": 250044,
    "lv": 250017,
    "ja": 250012,
}
```

As an example, if you would like to translate to Swedish, you can do the following:

```python
from datasets import load_dataset
from transformers import pipeline

# select correct `forced_bos_token_id`
forced_bos_token_id = MAPPING["sv"]

# replace following lines to load an audio file of your choice
librispeech_en = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
audio_file = librispeech_en[0]["file"]

asr = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-xls-r-2b-22-to-16", feature_extractor="facebook/wav2vec2-xls-r-2b-22-to-16")

translation = asr(audio_file, forced_bos_token_id=forced_bos_token_id)
```

or step-by-step as follows:

```python
import torch
from transformers import Speech2Text2Processor, SpeechEncoderDecoderModel
from datasets import load_dataset

model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-2b-22-to-16")
processor = Speech2Text2Processor.from_pretrained("facebook/wav2vec2-xls-r-2b-22-to-16")

ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")

# select correct `forced_bos_token_id`
forced_bos_token_id = MAPPING["sv"]

inputs = processor(ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["array"]["sampling_rate"], return_tensors="pt")
generated_ids = model.generate(input_ids=inputs["input_features"], attention_mask=inputs["attention_mask"], forced_bos_token_id=forced_bos_token)
transcription = processor.batch_decode(generated_ids)
```

## More XLS-R models for `{lang}` -> `en` Speech Translation

- [Wav2Vec2-XLS-R-300M-EN-15](https://huggingface.co/facebook/wav2vec2-xls-r-300m-en-to-15)
- [Wav2Vec2-XLS-R-1B-EN-15](https://huggingface.co/facebook/wav2vec2-xls-r-1b-en-to-15)
- [Wav2Vec2-XLS-R-2B-EN-15](https://huggingface.co/facebook/wav2vec2-xls-r-2b-en-to-15)
- [Wav2Vec2-XLS-R-2B-22-16](https://huggingface.co/facebook/wav2vec2-xls-r-2b-22-to-16)