patrickvonplaten
commited on
Commit
•
9e495b5
1
Parent(s):
a228ddf
up
Browse files- run_speech_recognition_ctc.py +633 -0
run_speech_recognition_ctc.py
ADDED
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import bitsandbytes as bnb
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
32 |
+
|
33 |
+
import transformers
|
34 |
+
from transformers import (
|
35 |
+
AutoConfig,
|
36 |
+
AutoFeatureExtractor,
|
37 |
+
AutoModelForCTC,
|
38 |
+
AutoTokenizer,
|
39 |
+
HfArgumentParser,
|
40 |
+
Trainer,
|
41 |
+
TrainingArguments,
|
42 |
+
Wav2Vec2Processor,
|
43 |
+
set_seed,
|
44 |
+
)
|
45 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
46 |
+
from transformers.utils import check_min_version
|
47 |
+
from transformers.utils.versions import require_version
|
48 |
+
|
49 |
+
|
50 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
51 |
+
check_min_version("4.13.0.dev0")
|
52 |
+
|
53 |
+
require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
54 |
+
|
55 |
+
|
56 |
+
logger = logging.getLogger(__name__)
|
57 |
+
|
58 |
+
|
59 |
+
def list_field(default=None, metadata=None):
|
60 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
61 |
+
|
62 |
+
|
63 |
+
@dataclass
|
64 |
+
class ModelArguments:
|
65 |
+
"""
|
66 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
67 |
+
"""
|
68 |
+
|
69 |
+
model_name_or_path: str = field(
|
70 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
71 |
+
)
|
72 |
+
cache_dir: Optional[str] = field(
|
73 |
+
default=None,
|
74 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
75 |
+
)
|
76 |
+
freeze_feature_extractor: Optional[bool] = field(
|
77 |
+
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
|
78 |
+
)
|
79 |
+
attention_dropout: Optional[float] = field(
|
80 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
81 |
+
)
|
82 |
+
activation_dropout: Optional[float] = field(
|
83 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
84 |
+
)
|
85 |
+
feat_proj_dropout: Optional[float] = field(
|
86 |
+
default=0.0, metadata={"help": "The dropout ratio for the projected features."}
|
87 |
+
)
|
88 |
+
hidden_dropout: Optional[float] = field(
|
89 |
+
default=0.0,
|
90 |
+
metadata={
|
91 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
92 |
+
},
|
93 |
+
)
|
94 |
+
final_dropout: Optional[float] = field(
|
95 |
+
default=0.0,
|
96 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
97 |
+
)
|
98 |
+
mask_time_prob: Optional[float] = field(
|
99 |
+
default=0.05,
|
100 |
+
metadata={
|
101 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
102 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
103 |
+
"vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``."
|
104 |
+
},
|
105 |
+
)
|
106 |
+
layerdrop: Optional[float] = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
107 |
+
ctc_loss_reduction: Optional[str] = field(
|
108 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
@dataclass
|
113 |
+
class DataTrainingArguments:
|
114 |
+
"""
|
115 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
116 |
+
|
117 |
+
Using `HfArgumentParser` we can turn this class
|
118 |
+
into argparse arguments to be able to specify them on
|
119 |
+
the command line.
|
120 |
+
"""
|
121 |
+
|
122 |
+
dataset_name: str = field(
|
123 |
+
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
124 |
+
)
|
125 |
+
dataset_config_name: Optional[str] = field(
|
126 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
127 |
+
)
|
128 |
+
train_split_name: Optional[str] = field(
|
129 |
+
default="train+validation",
|
130 |
+
metadata={
|
131 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
132 |
+
},
|
133 |
+
)
|
134 |
+
eval_split_name: Optional[str] = field(
|
135 |
+
default="test",
|
136 |
+
metadata={
|
137 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
138 |
+
},
|
139 |
+
)
|
140 |
+
audio_column_name: Optional[str] = field(
|
141 |
+
default="audio",
|
142 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
143 |
+
)
|
144 |
+
text_column_name: Optional[str] = field(
|
145 |
+
default="text",
|
146 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
147 |
+
)
|
148 |
+
overwrite_cache: bool = field(
|
149 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
150 |
+
)
|
151 |
+
preprocessing_num_workers: Optional[int] = field(
|
152 |
+
default=None,
|
153 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
154 |
+
)
|
155 |
+
max_train_samples: Optional[int] = field(
|
156 |
+
default=None,
|
157 |
+
metadata={
|
158 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
159 |
+
"value if set."
|
160 |
+
},
|
161 |
+
)
|
162 |
+
max_eval_samples: Optional[int] = field(
|
163 |
+
default=None,
|
164 |
+
metadata={
|
165 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
166 |
+
"value if set."
|
167 |
+
},
|
168 |
+
)
|
169 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
170 |
+
default=None,
|
171 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
172 |
+
)
|
173 |
+
max_duration_in_seconds: Optional[float] = field(
|
174 |
+
default=20.0,
|
175 |
+
metadata={
|
176 |
+
"help": "Truncate audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
177 |
+
},
|
178 |
+
)
|
179 |
+
min_duration_in_seconds: Optional[float] = field(
|
180 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
181 |
+
)
|
182 |
+
preprocessing_only: Optional[bool] = field(
|
183 |
+
default=False,
|
184 |
+
metadata={
|
185 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
186 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
187 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
188 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
189 |
+
},
|
190 |
+
)
|
191 |
+
use_auth_token: Optional[bool] = field(
|
192 |
+
default=False,
|
193 |
+
metadata={
|
194 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
195 |
+
":obj:`transformers-cli logiin as HTTP bearer authorization for remote files."
|
196 |
+
},
|
197 |
+
)
|
198 |
+
|
199 |
+
|
200 |
+
@dataclass
|
201 |
+
class DataCollatorCTCWithPadding:
|
202 |
+
"""
|
203 |
+
Data collator that will dynamically pad the inputs received.
|
204 |
+
Args:
|
205 |
+
processor (:class:`~transformers.Wav2Vec2Processor`)
|
206 |
+
The processor used for proccessing the data.
|
207 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
208 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
209 |
+
among:
|
210 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
211 |
+
sequence if provided).
|
212 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
213 |
+
maximum acceptable input length for the model if that argument is not provided.
|
214 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
215 |
+
different lengths).
|
216 |
+
max_length (:obj:`int`, `optional`):
|
217 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
218 |
+
max_length_labels (:obj:`int`, `optional`):
|
219 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
220 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
221 |
+
If set will pad the sequence to a multiple of the provided value.
|
222 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
223 |
+
7.5 (Volta).
|
224 |
+
"""
|
225 |
+
|
226 |
+
processor: Wav2Vec2Processor
|
227 |
+
padding: Union[bool, str] = "longest"
|
228 |
+
pad_to_multiple_of: Optional[int] = None
|
229 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
230 |
+
|
231 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
232 |
+
# split inputs and labels since they have to be of different lenghts and need
|
233 |
+
# different padding methods
|
234 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
235 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
236 |
+
|
237 |
+
batch = self.processor.pad(
|
238 |
+
input_features,
|
239 |
+
padding=self.padding,
|
240 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
241 |
+
return_tensors="pt",
|
242 |
+
)
|
243 |
+
|
244 |
+
with self.processor.as_target_processor():
|
245 |
+
labels_batch = self.processor.pad(
|
246 |
+
label_features,
|
247 |
+
padding=self.padding,
|
248 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
249 |
+
return_tensors="pt",
|
250 |
+
)
|
251 |
+
|
252 |
+
# replace padding with -100 to ignore loss correctly
|
253 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
254 |
+
|
255 |
+
batch["labels"] = labels
|
256 |
+
|
257 |
+
return batch
|
258 |
+
|
259 |
+
|
260 |
+
def create_vocabulary_from_data(datasets: DatasetDict):
|
261 |
+
# Given training and test labels create vocabulary
|
262 |
+
def extract_all_chars(batch):
|
263 |
+
all_text = " ".join(batch["target_text"])
|
264 |
+
vocab = list(set(all_text))
|
265 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
266 |
+
|
267 |
+
vocabs = datasets.map(
|
268 |
+
extract_all_chars,
|
269 |
+
batched=True,
|
270 |
+
batch_size=-1,
|
271 |
+
keep_in_memory=True,
|
272 |
+
remove_columns=datasets["train"].column_names,
|
273 |
+
)
|
274 |
+
|
275 |
+
# take union of all unique characters in each dataset
|
276 |
+
vocab_set = functools.reduce(
|
277 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
278 |
+
)
|
279 |
+
|
280 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
281 |
+
|
282 |
+
# replace white space with delimiter token
|
283 |
+
vocab_dict["|"] = vocab_dict[" "]
|
284 |
+
del vocab_dict[" "]
|
285 |
+
|
286 |
+
# add unk and pad token
|
287 |
+
vocab_dict["[UNK]"] = len(vocab_dict)
|
288 |
+
vocab_dict["[PAD]"] = len(vocab_dict)
|
289 |
+
|
290 |
+
return vocab_dict
|
291 |
+
|
292 |
+
|
293 |
+
def main():
|
294 |
+
# See all possible arguments in src/transformers/training_args.py
|
295 |
+
# or by passing the --help flag to this script.
|
296 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
297 |
+
|
298 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
299 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
300 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
301 |
+
# let's parse it to get our arguments.
|
302 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
303 |
+
else:
|
304 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
305 |
+
|
306 |
+
# Detecting last checkpoint.
|
307 |
+
last_checkpoint = None
|
308 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
309 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
310 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
311 |
+
raise ValueError(
|
312 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
313 |
+
"Use --overwrite_output_dir to overcome."
|
314 |
+
)
|
315 |
+
elif last_checkpoint is not None:
|
316 |
+
logger.info(
|
317 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
318 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
319 |
+
)
|
320 |
+
|
321 |
+
# Setup logging
|
322 |
+
logging.basicConfig(
|
323 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
324 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
325 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
326 |
+
)
|
327 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
328 |
+
|
329 |
+
# Log on each process the small summary:
|
330 |
+
logger.warning(
|
331 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
332 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
333 |
+
)
|
334 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
335 |
+
if is_main_process(training_args.local_rank):
|
336 |
+
transformers.utils.logging.set_verbosity_info()
|
337 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
338 |
+
|
339 |
+
# Set seed before initializing model.
|
340 |
+
set_seed(training_args.seed)
|
341 |
+
|
342 |
+
# 1. First, let's load the dataset
|
343 |
+
raw_datasets = DatasetDict()
|
344 |
+
raw_datasets["train"] = load_dataset(
|
345 |
+
data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name
|
346 |
+
)
|
347 |
+
raw_datasets["eval"] = load_dataset(
|
348 |
+
data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name
|
349 |
+
)
|
350 |
+
|
351 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
352 |
+
raise ValueError(
|
353 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
354 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
355 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
356 |
+
)
|
357 |
+
|
358 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
359 |
+
raise ValueError(
|
360 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
361 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
362 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
363 |
+
)
|
364 |
+
|
365 |
+
# prepare dataset
|
366 |
+
if data_args.max_train_samples is not None:
|
367 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
368 |
+
|
369 |
+
if data_args.max_eval_samples is not None:
|
370 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
371 |
+
|
372 |
+
# 2. We remove some special characters from the datasets
|
373 |
+
# that make training complicated and do not help in transcribing the speech
|
374 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
375 |
+
# that could be easily picked up by the model
|
376 |
+
|
377 |
+
chars_to_ignore_regex = (
|
378 |
+
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
379 |
+
)
|
380 |
+
|
381 |
+
def remove_special_characters(batch):
|
382 |
+
if chars_to_ignore_regex is not None:
|
383 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[data_args.text_column_name]).lower() + " "
|
384 |
+
else:
|
385 |
+
batch["target_text"] = batch[data_args.text_column_name].lower() + " "
|
386 |
+
return batch
|
387 |
+
|
388 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
389 |
+
raw_datasets = raw_datasets.map(
|
390 |
+
remove_special_characters,
|
391 |
+
remove_columns=[data_args.text_column_name],
|
392 |
+
desc="remove special characters from datasets",
|
393 |
+
)
|
394 |
+
|
395 |
+
# 3. Next, we create the vocabulary of the model by extracting all unique characters from
|
396 |
+
# the training and evaluation datasets
|
397 |
+
# We need to make sure that only first rank saves vocabulary
|
398 |
+
# make sure all processes wait until vocab is created
|
399 |
+
vocab_file = os.path.join(training_args.output_dir, "vocab.json")
|
400 |
+
|
401 |
+
with training_args.main_process_first():
|
402 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
403 |
+
os.remove(vocab_file)
|
404 |
+
|
405 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
406 |
+
if not os.path.isfile(vocab_file):
|
407 |
+
os.makedirs(training_args.output_dir, exist_ok=True)
|
408 |
+
vocab_dict = create_vocabulary_from_data(raw_datasets)
|
409 |
+
|
410 |
+
# save vocab dict to be loaded into tokenizer
|
411 |
+
with open(vocab_file, "w") as file:
|
412 |
+
json.dump(vocab_dict, file)
|
413 |
+
|
414 |
+
# 4. Now we can instantiate the configuration, feature extractor, tokenizer and model
|
415 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
416 |
+
# one local process can concurrently download model & vocab.
|
417 |
+
|
418 |
+
# load config
|
419 |
+
config = AutoConfig.from_pretrained(
|
420 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
421 |
+
)
|
422 |
+
|
423 |
+
# tokenizer is defined by `tokenizer_class` if present in config else by `model_type`
|
424 |
+
config_for_tokenizer = config if config.tokenizer_class is not None else None
|
425 |
+
tokenizer_type = config.model_type if config.tokenizer_class is None else None
|
426 |
+
|
427 |
+
# load feature_extractor, tokenizer and create processor
|
428 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
429 |
+
training_args.output_dir,
|
430 |
+
config=config_for_tokenizer,
|
431 |
+
tokenizer_type=tokenizer_type,
|
432 |
+
unk_token="[UNK]",
|
433 |
+
pad_token="[PAD]",
|
434 |
+
word_delimiter_token="|",
|
435 |
+
use_auth_token=data_args.use_auth_token,
|
436 |
+
)
|
437 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
438 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
439 |
+
)
|
440 |
+
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
|
441 |
+
|
442 |
+
# adapt config
|
443 |
+
config.update(
|
444 |
+
{
|
445 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
446 |
+
"attention_dropout": model_args.attention_dropout,
|
447 |
+
"hidden_dropout": model_args.hidden_dropout,
|
448 |
+
"final_dropout": model_args.final_dropout,
|
449 |
+
"mask_time_prob": model_args.mask_time_prob,
|
450 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
451 |
+
"layerdrop": model_args.layerdrop,
|
452 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
453 |
+
"pad_token_id": processor.tokenizer.pad_token_id,
|
454 |
+
"vocab_size": len(processor.tokenizer),
|
455 |
+
"activation_dropout": model_args.activation_dropout,
|
456 |
+
}
|
457 |
+
)
|
458 |
+
|
459 |
+
# create model
|
460 |
+
model = AutoModelForCTC.from_pretrained(
|
461 |
+
model_args.model_name_or_path,
|
462 |
+
cache_dir=model_args.cache_dir,
|
463 |
+
config=config,
|
464 |
+
use_auth_token=data_args.use_auth_token,
|
465 |
+
)
|
466 |
+
|
467 |
+
# freeze encoder
|
468 |
+
if model_args.freeze_feature_extractor:
|
469 |
+
model.freeze_feature_extractor()
|
470 |
+
|
471 |
+
# 5. Now we preprocess the datasets including loading the audio, resampling and normalization
|
472 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
473 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
474 |
+
# via the `feature_extractor`
|
475 |
+
|
476 |
+
# make sure that dataset decodes audio with correct sampling rate
|
477 |
+
raw_datasets = raw_datasets.cast_column(
|
478 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
479 |
+
)
|
480 |
+
|
481 |
+
# derive max & min input length for sample rate & max duration
|
482 |
+
max_input_length = data_args.max_duration_in_seconds * processor.feature_extractor.sampling_rate
|
483 |
+
min_input_length = data_args.min_duration_in_seconds * processor.feature_extractor.sampling_rate
|
484 |
+
|
485 |
+
# Preprocessing the datasets.
|
486 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
487 |
+
def prepare_dataset(batch):
|
488 |
+
# load audio
|
489 |
+
sample = batch[data_args.audio_column_name]
|
490 |
+
|
491 |
+
batch["input_values"] = processor(
|
492 |
+
sample["array"], sampling_rate=sample["sampling_rate"], truncate=True, max_length=max_input_length
|
493 |
+
).input_values[0]
|
494 |
+
batch["input_length"] = len(batch["input_values"])
|
495 |
+
|
496 |
+
# Setup the processor for targets
|
497 |
+
with processor.as_target_processor():
|
498 |
+
batch["labels"] = processor(batch["target_text"]).input_ids
|
499 |
+
return batch
|
500 |
+
|
501 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
502 |
+
vectorized_datasets = raw_datasets.map(
|
503 |
+
prepare_dataset,
|
504 |
+
remove_columns=raw_datasets["train"].column_names,
|
505 |
+
num_proc=data_args.preprocessing_num_workers,
|
506 |
+
desc="preprocess datasets",
|
507 |
+
)
|
508 |
+
|
509 |
+
if min_input_length > 0.0:
|
510 |
+
# filter data that is shorter than min_input_length
|
511 |
+
vectorized_datasets = vectorized_datasets.filter(
|
512 |
+
lambda x: x > min_input_length,
|
513 |
+
num_proc=data_args.preprocessing_num_workers,
|
514 |
+
input_columns=["input_length"],
|
515 |
+
)
|
516 |
+
|
517 |
+
vectorized_datasets = vectorized_datasets.remove_columns("input_length")
|
518 |
+
|
519 |
+
# 6. Next, we can prepare the training.
|
520 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
521 |
+
# instantiate a data collator and the trainer
|
522 |
+
|
523 |
+
# Define Metric during training
|
524 |
+
wer_metric = load_metric("wer")
|
525 |
+
|
526 |
+
# for large datasets it is advised to run the preprocessing on a
|
527 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
528 |
+
# be a timeout when running the script in distributed mode.
|
529 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
530 |
+
# cached dataset
|
531 |
+
if data_args.preprocessing_only:
|
532 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
533 |
+
return
|
534 |
+
|
535 |
+
def compute_metrics(pred):
|
536 |
+
pred_logits = pred.predictions
|
537 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
538 |
+
|
539 |
+
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
|
540 |
+
|
541 |
+
pred_str = processor.batch_decode(pred_ids)
|
542 |
+
# we do not want to group tokens when computing the metrics
|
543 |
+
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
|
544 |
+
|
545 |
+
wer = wer_metric.compute(predictions=pred_str, references=label_str)
|
546 |
+
|
547 |
+
return {"wer": wer}
|
548 |
+
|
549 |
+
# Instantiate custom data collator
|
550 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
551 |
+
|
552 |
+
# create Adam8bit optimizer
|
553 |
+
optimizer = bnb.optim.Adam8bit(model.parameters(), lr=training_args.learning_rate, betas=(training_args.adam_beta1, training_args.adam_beta2))
|
554 |
+
|
555 |
+
# Initialize Trainer
|
556 |
+
trainer = Trainer(
|
557 |
+
model=model,
|
558 |
+
data_collator=data_collator,
|
559 |
+
args=training_args,
|
560 |
+
compute_metrics=compute_metrics,
|
561 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
562 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
563 |
+
tokenizer=processor.feature_extractor,
|
564 |
+
optimizers=(optimizer, None), # None is replaced by default learning rate schedule
|
565 |
+
)
|
566 |
+
|
567 |
+
# 7. Finally, we can start training
|
568 |
+
|
569 |
+
# Training
|
570 |
+
if training_args.do_train:
|
571 |
+
|
572 |
+
# use last checkpoint if exist
|
573 |
+
if last_checkpoint is not None:
|
574 |
+
checkpoint = last_checkpoint
|
575 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
576 |
+
checkpoint = model_args.model_name_or_path
|
577 |
+
else:
|
578 |
+
checkpoint = None
|
579 |
+
|
580 |
+
# Save the feature_extractor and the tokenizer
|
581 |
+
if is_main_process(training_args.local_rank):
|
582 |
+
processor.save_pretrained(training_args.output_dir)
|
583 |
+
|
584 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
585 |
+
trainer.save_model()
|
586 |
+
|
587 |
+
metrics = train_result.metrics
|
588 |
+
max_train_samples = (
|
589 |
+
data_args.max_train_samples
|
590 |
+
if data_args.max_train_samples is not None
|
591 |
+
else len(vectorized_datasets["train"])
|
592 |
+
)
|
593 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
594 |
+
|
595 |
+
trainer.log_metrics("train", metrics)
|
596 |
+
trainer.save_metrics("train", metrics)
|
597 |
+
trainer.save_state()
|
598 |
+
|
599 |
+
# Evaluation
|
600 |
+
results = {}
|
601 |
+
if training_args.do_eval:
|
602 |
+
logger.info("*** Evaluate ***")
|
603 |
+
metrics = trainer.evaluate()
|
604 |
+
max_eval_samples = (
|
605 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
606 |
+
)
|
607 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
608 |
+
|
609 |
+
trainer.log_metrics("eval", metrics)
|
610 |
+
trainer.save_metrics("eval", metrics)
|
611 |
+
|
612 |
+
# Write model card and (optionally) push to hub
|
613 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
614 |
+
kwargs = {
|
615 |
+
"finetuned_from": model_args.model_name_or_path,
|
616 |
+
"tasks": "speech-recognition",
|
617 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
618 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
619 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
620 |
+
}
|
621 |
+
if "common_voice" in data_args.dataset_name:
|
622 |
+
kwargs["language"] = config_name
|
623 |
+
|
624 |
+
if training_args.push_to_hub:
|
625 |
+
trainer.push_to_hub(**kwargs)
|
626 |
+
else:
|
627 |
+
trainer.create_model_card(**kwargs)
|
628 |
+
|
629 |
+
return results
|
630 |
+
|
631 |
+
|
632 |
+
if __name__ == "__main__":
|
633 |
+
main()
|