File size: 4,940 Bytes
3ec40c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange
from torchvision.transforms.v2 import (
Compose,
Resize,
InterpolationMode,
ToImage,
ToDtype,
Normalize,
)
class Attention(nn.Module):
def __init__(self, dim, num_heads=16):
super().__init__()
assert dim % num_heads == 0, "dim should be divisible by num_heads"
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3)
self.proj = nn.Linear(dim, dim)
torch.nn.init.kaiming_normal_(
self.qkv.weight, mode="fan_in", nonlinearity="relu"
)
torch.nn.init.kaiming_normal_(
self.proj.weight, mode="fan_in", nonlinearity="relu"
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, self.head_dim)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv.unbind(0)
x = F.scaled_dot_product_attention(q, k, v)
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
return x
class VitBlock(nn.Module):
def __init__(self, embed_dim):
super().__init__()
self.attn = Attention(embed_dim)
self.mlp = MLP(embed_dim, 4304)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
class VisionTransformer(nn.Module):
def __init__(self):
super().__init__()
embed_len = 729
embed_dim = 1152
self.patch_embed = LinearPatchEmbedding()
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02)
self.blocks = nn.Sequential(*[VitBlock(embed_dim) for _ in range(27)])
self.norm = nn.LayerNorm(embed_dim)
def forward(self, x):
x = self.patch_embed(x)
x = x + self.pos_embed
for block in self.blocks:
x = block(x)
return self.norm(x)
class EncoderWrapper(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.ModuleDict({"visual": VisionTransformer()})
def forward(self, x):
return self.model["visual"](x)
class LinearPatchEmbedding(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(588, 1152)
def forward(self, x):
return self.linear(x)
class MLP(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: int = None,
out_features: int = None,
) -> None:
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = nn.GELU(approximate="tanh")
self.fc2 = nn.Linear(hidden_features, out_features)
torch.nn.init.kaiming_normal_(
self.fc1.weight, mode="fan_in", nonlinearity="relu"
)
torch.nn.init.kaiming_normal_(
self.fc2.weight, mode="fan_in", nonlinearity="relu"
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
class VisionProjection(nn.Module):
def __init__(self):
super().__init__()
image_embedding_dim = 1152
model_dim = 2048
hidden_dim = model_dim * 4
self.mlp = MLP(image_embedding_dim, hidden_dim, model_dim)
@property
def device(self):
return self.mlp.fc1.weight.device
def forward(self, x):
return self.mlp(x)
class VisionEncoder(nn.Module):
def __init__(self) -> None:
super().__init__()
self.encoder = EncoderWrapper()
self.projection = VisionProjection()
self.preprocess = Compose(
[
Resize(size=(378, 378), interpolation=InterpolationMode.BICUBIC),
ToImage(),
ToDtype(torch.float32, scale=True),
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
@property
def device(self):
return self.projection.mlp.fc1.weight.device
@property
def dtype(self):
return self.projection.mlp.fc1.weight.dtype
def __call__(self, images) -> torch.Tensor:
if not isinstance(images, list):
images = [images]
with torch.no_grad():
x = torch.stack(
[self.preprocess(image.convert("RGB")) for image in images]
).to(self.device, dtype=self.dtype)
x = rearrange(x, "b c (h p1) (w p2) -> b (h w) (c p1 p2)", p1=14, p2=14)
x = self.encoder(x)
x = self.projection(x)
return x
|