ppo-LunarLander-v2 / config.json
fapont's picture
Upload lunar lander model
a74c277
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4e8e16ae50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4e8e16aee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4e8e16af70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4e8e0ef040>", "_build": "<function ActorCriticPolicy._build at 0x7f4e8e0ef0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4e8e0ef160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4e8e0ef1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4e8e0ef280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4e8e0ef310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4e8e0ef3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4e8e0ef430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4e8e14bde0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673202403045883679, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIychZ2NNXcECUhpRSlIwBbJRNQgKMAXSUR0CftGzVtoBadX2UKGgGaAloD0MI9+Y3TDQ1aECUhpRSlGgVTegDaBZHQJ+0v6k69011fZQoaAZoCWgPQwjfv3lx4u1wQJSGlFKUaBVNdANoFkdAn8592LYPG3V9lChoBmgJaA9DCOuQm+EGyEZAlIaUUpRoFUvJaBZHQJ/OiiAUcn51fZQoaAZoCWgPQwge3nNgOSBFQJSGlFKUaBVL02gWR0Cfz6bTtsvadX2UKGgGaAloD0MI/KpcqPxnYkCUhpRSlGgVTegDaBZHQJ/Qh6Tnq3V1fZQoaAZoCWgPQwiNYrmlVddsQJSGlFKUaBVNMwFoFkdAn9CVk6Lfk3V9lChoBmgJaA9DCD4hO29jT2pAlIaUUpRoFU1HAWgWR0Cf0ZweNkvsdX2UKGgGaAloD0MI7FG4HkUNcUCUhpRSlGgVTRkDaBZHQJ/R7IzWPLh1fZQoaAZoCWgPQwhrLcxC+3BwQJSGlFKUaBVNiAJoFkdAn9JUjkdWAHV9lChoBmgJaA9DCLvTnSeeEnBAlIaUUpRoFU2bAWgWR0Cf0oNB4UvgdX2UKGgGaAloD0MIyt3n+KgmcECUhpRSlGgVTV8BaBZHQJ/S0/2TPjZ1fZQoaAZoCWgPQwiQ+YBApy1yQJSGlFKUaBVNagFoFkdAn9Ok9ECvHXV9lChoBmgJaA9DCF67tOEw0HBAlIaUUpRoFU0QAWgWR0Cf1wF2V3UydX2UKGgGaAloD0MIGFqdnKEOb0CUhpRSlGgVTTUBaBZHQJ/YtN0vGqB1fZQoaAZoCWgPQwhky/J1md9vQJSGlFKUaBVNRwFoFkdAn9jWTot+TnV9lChoBmgJaA9DCPoK0oxF7XBAlIaUUpRoFU1MAWgWR0Cf2h4aP0ZndX2UKGgGaAloD0MIzvxqDlA6cUCUhpRSlGgVTSUBaBZHQJ/bFgYxcml1fZQoaAZoCWgPQwh4CrlSzw5KQJSGlFKUaBVL8WgWR0Cf2/+so2GZdX2UKGgGaAloD0MIrwW9N4aBbkCUhpRSlGgVTUQBaBZHQJ/cnAYYR/V1fZQoaAZoCWgPQwjKwtfXuvxOQJSGlFKUaBVLzGgWR0Cf3KdMTN+tdX2UKGgGaAloD0MIza0QVmNdQUCUhpRSlGgVS/ZoFkdAn9y7tiQT23V9lChoBmgJaA9DCOgWuhKBWm9AlIaUUpRoFU06AWgWR0Cf3S4y44IbdX2UKGgGaAloD0MIM/0S8VambUCUhpRSlGgVTT4BaBZHQJ/eDn4fwJB1fZQoaAZoCWgPQwjVBbzMcKJxQJSGlFKUaBVNQgFoFkdAn94kojOcD3V9lChoBmgJaA9DCE1qaAPwcHFAlIaUUpRoFU1fAWgWR0Cf4BGAkLQYdX2UKGgGaAloD0MIqoHmc26BakCUhpRSlGgVTaICaBZHQJ/hwU0vXbx1fZQoaAZoCWgPQwg8SiU84VpwQJSGlFKUaBVNlwFoFkdAn+NgRwqAjXV9lChoBmgJaA9DCBUb8zrigm9AlIaUUpRoFU05AWgWR0Cf5IPgvUSadX2UKGgGaAloD0MIgpGXNbEkPkCUhpRSlGgVS9VoFkdAn+VUMTewcHV9lChoBmgJaA9DCJHvUuqSnW5AlIaUUpRoFU0pAWgWR0Cf5Y+wC8vmdX2UKGgGaAloD0MIidNJtvotckCUhpRSlGgVTc8BaBZHQJ/mIRL9MsZ1fZQoaAZoCWgPQwj/zCA+sCc3QJSGlFKUaBVL7WgWR0Cf5kGorFwUdX2UKGgGaAloD0MIFvcfmY41cUCUhpRSlGgVTSEBaBZHQJ/n4sbvPTp1fZQoaAZoCWgPQwjjOPBquZFwQJSGlFKUaBVNUwFoFkdAn+hRPbfxc3V9lChoBmgJaA9DCMBcixYgR25AlIaUUpRoFU06AWgWR0Cf6t9Zid8RdX2UKGgGaAloD0MIeVxUi0gTckCUhpRSlGgVTVABaBZHQJ/uWAVfu1F1fZQoaAZoCWgPQwjzO01mvK9HQJSGlFKUaBVL6WgWR0Cf72Huqm0mdX2UKGgGaAloD0MIBwySPq3ccUCUhpRSlGgVTbMBaBZHQJ/vYxyn1nN1fZQoaAZoCWgPQwg5tMh2vhFxQJSGlFKUaBVN7gFoFkdAn/AagyuZC3V9lChoBmgJaA9DCAPtDikGsExAlIaUUpRoFUu9aBZHQJ/wtuTA31l1fZQoaAZoCWgPQwizlZf8D5lxQJSGlFKUaBVN6wFoFkdAn/Fkr08NhHV9lChoBmgJaA9DCK/PnPUpUG5AlIaUUpRoFU1PAWgWR0Cf8fVMEidKdX2UKGgGaAloD0MIUbtfBfitbkCUhpRSlGgVTYgBaBZHQJ/y/fyf+S91fZQoaAZoCWgPQwhTPZl/tNtwQJSGlFKUaBVN/AFoFkdAn/QGu5jH43V9lChoBmgJaA9DCMA+OnWlw3BAlIaUUpRoFU2BAmgWR0Cf9JdeIEbHdX2UKGgGaAloD0MIkbQbfQwfcUCUhpRSlGgVTTABaBZHQJ/1g20iQkp1fZQoaAZoCWgPQwhB1lOrr9pvQJSGlFKUaBVNcQFoFkdAn/aJGnXNDHV9lChoBmgJaA9DCIzc09Xdx3FAlIaUUpRoFU2TAWgWR0Cf9098qnWKdX2UKGgGaAloD0MI9UvEWydXcUCUhpRSlGgVTbsBaBZHQJ/390+1Sfl1fZQoaAZoCWgPQwjIXu/+eLlJQJSGlFKUaBVNAAFoFkdAoAjS7ROUMXV9lChoBmgJaA9DCBHlC1pIUBtAlIaUUpRoFUv7aBZHQKAJC3KB/Zx1fZQoaAZoCWgPQwhX68TleDlBQJSGlFKUaBVL9WgWR0CgCToeYD1XdX2UKGgGaAloD0MIWtWSjvKBbkCUhpRSlGgVTQUCaBZHQKAJ0MrEtNB1fZQoaAZoCWgPQwh8SPjen4BxQJSGlFKUaBVNYwFoFkdAoAqIACGN73V9lChoBmgJaA9DCJAV/DYE9XBAlIaUUpRoFU1PAWgWR0CgCo3xWkrPdX2UKGgGaAloD0MIuATgn1KtckCUhpRSlGgVTTIBaBZHQKAK3L39JjF1fZQoaAZoCWgPQwiV88Xei/NtQJSGlFKUaBVNLQFoFkdAoAr7ItDlYHV9lChoBmgJaA9DCN/+XDTklWxAlIaUUpRoFU03AWgWR0CgDBFdTo+wdX2UKGgGaAloD0MIaCPXTSn0cECUhpRSlGgVTXABaBZHQKAM0F10T111fZQoaAZoCWgPQwgVV5V9VzptQJSGlFKUaBVNEgFoFkdAoAzqNlyzX3V9lChoBmgJaA9DCLWLaaa7kXFAlIaUUpRoFU19AWgWR0CgDfHscABDdX2UKGgGaAloD0MIrrfNVMgwcUCUhpRSlGgVTS8BaBZHQKAN9fnfVI91fZQoaAZoCWgPQwj1KjI6ILRxQJSGlFKUaBVNawFoFkdAoA6CL61stXV9lChoBmgJaA9DCFVRvMrabklAlIaUUpRoFUvMaBZHQKAPNVCojwB1fZQoaAZoCWgPQwimSL4SyI9xQJSGlFKUaBVNRwFoFkdAoA/uq1gH/3V9lChoBmgJaA9DCPZhvVHrDXJAlIaUUpRoFU0jAWgWR0CgECxKYiPidX2UKGgGaAloD0MIZKw2/68obECUhpRSlGgVTV0BaBZHQKAQric5Ke11fZQoaAZoCWgPQwjNW3UdKjtwQJSGlFKUaBVNIAFoFkdAoBDdvfj0c3V9lChoBmgJaA9DCMwpATHJsnFAlIaUUpRoFU30AWgWR0CgERMdT5wgdX2UKGgGaAloD0MI2nIuxdWickCUhpRSlGgVTTsBaBZHQKARcjVQQ+V1fZQoaAZoCWgPQwj0pbc/FypwQJSGlFKUaBVNegFoFkdAoBGAgDA8CHV9lChoBmgJaA9DCG77HvXXP0RAlIaUUpRoFUvoaBZHQKATAay8jA11fZQoaAZoCWgPQwgxQKIJFO5tQJSGlFKUaBVNZAFoFkdAoBP2x2SuAHV9lChoBmgJaA9DCP9YiA6BEXBAlIaUUpRoFU1NAWgWR0CgFFAqd6LPdX2UKGgGaAloD0MIsfojDIOYcUCUhpRSlGgVTSUBaBZHQKAUbMwDeTF1fZQoaAZoCWgPQwgwf4XMVfBxQJSGlFKUaBVNcQFoFkdAoBT/q1PWQXV9lChoBmgJaA9DCMYzaOifiDhAlIaUUpRoFUvIaBZHQKAVNfkWAPN1fZQoaAZoCWgPQwj9TpMZb0VQQJSGlFKUaBVL0WgWR0CgFfd1uBMBdX2UKGgGaAloD0MI+YbCZ+sMcECUhpRSlGgVTT0BaBZHQKAWSuFpPAR1fZQoaAZoCWgPQwitaHOcGxpwQJSGlFKUaBVNLgFoFkdAoBaeDzyz5XV9lChoBmgJaA9DCJuNlZhn3S1AlIaUUpRoFUvsaBZHQKAWrUIcBEN1fZQoaAZoCWgPQwgYmBWKdPVxQJSGlFKUaBVNKgFoFkdAoBbBJsfq5nV9lChoBmgJaA9DCDGYv0JmIGBAlIaUUpRoFU3oA2gWR0CgFvhe5WildX2UKGgGaAloD0MI/Z/DfLndcECUhpRSlGgVTZgBaBZHQKAXabKifxt1fZQoaAZoCWgPQwjt9e6P91VrQJSGlFKUaBVNQQFoFkdAoBeHGS6lL3V9lChoBmgJaA9DCH+EYcDSHnJAlIaUUpRoFU1gAmgWR0CgF+4hEBsAdX2UKGgGaAloD0MIGFsIclBNcUCUhpRSlGgVTY0BaBZHQKAZIqGUOd51fZQoaAZoCWgPQwhYU1kUtv1yQJSGlFKUaBVNSgFoFkdAoBqshvBJqnV9lChoBmgJaA9DCMWsF0P5XnFAlIaUUpRoFU2DAWgWR0CgGwyRB/qgdX2UKGgGaAloD0MIUIpW7gXlbECUhpRSlGgVTVYBaBZHQKAbb/Nqxkd1fZQoaAZoCWgPQwiVKHtLefhxQJSGlFKUaBVNYQFoFkdAoBuPl+3H73V9lChoBmgJaA9DCFjiAWVTH29AlIaUUpRoFU0UAWgWR0CgG4/j81n/dX2UKGgGaAloD0MItRX7y65acUCUhpRSlGgVTUgBaBZHQKAbsJKJ2uB1fZQoaAZoCWgPQwi6TiMtlT9xQJSGlFKUaBVNFQFoFkdAoBwcV1wHaHV9lChoBmgJaA9DCK7yBMJOr21AlIaUUpRoFU0yAWgWR0CgHGjV6NVBdX2UKGgGaAloD0MIe8GnOTmfcUCUhpRSlGgVTXkBaBZHQKAc2UaAFxJ1fZQoaAZoCWgPQwhvK702G+tOQJSGlFKUaBVL72gWR0CgHOXdCVrzdX2UKGgGaAloD0MISL99HTjFcUCUhpRSlGgVTUQBaBZHQKAdHnNgSe11fZQoaAZoCWgPQwiuR+F61MZxQJSGlFKUaBVNVAFoFkdAoB1Y3vQWvnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}