farrosalferro24 commited on
Commit
30c1de8
1 Parent(s): de3a6b2

Upload model and script

Browse files
Files changed (2) hide show
  1. pytorch_model.bin +3 -0
  2. script.py +109 -0
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bed2ba9abe11ad59b65d0ec5521f1ddb5d73d71988986a135322e7a53f77557e
3
+ size 1222078221
script.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ # import onnxruntime as ort
4
+ import os
5
+ from tqdm import tqdm
6
+ import timm
7
+ import torchvision.transforms as T
8
+ from PIL import Image
9
+ import torch
10
+
11
+ def is_gpu_available():
12
+ """Check if the python package `onnxruntime-gpu` is installed."""
13
+ return torch.cuda.is_available()
14
+
15
+
16
+ class PytorchWorker:
17
+ """Run inference using ONNX runtime."""
18
+
19
+ def __init__(self,
20
+ model_path: str,
21
+ model_name: str,
22
+ number_of_categories: int = 1784):
23
+
24
+ def _load_model(model_name, model_path):
25
+
26
+ print("Setting up Pytorch Model")
27
+ self.device = torch.device(
28
+ "cuda:0" if torch.cuda.is_available() else "cpu")
29
+ print(f"Using devide: {self.device}")
30
+
31
+ model = timm.create_model(model_name,
32
+ num_classes=number_of_categories,
33
+ pretrained=True)
34
+
35
+ # if not torch.cuda.is_available():
36
+ # model_ckpt = torch.load(model_path, map_location=torch.device("cpu"))
37
+ # else:
38
+ # model_ckpt = torch.load(model_path)
39
+
40
+ model_ckpt = torch.load(model_path, map_location=self.device)
41
+ model.load_state_dict(model_ckpt)
42
+
43
+ return model.to(self.device).eval()
44
+
45
+ self.model = _load_model(model_name, model_path)
46
+
47
+ self.transforms = T.Compose([
48
+ T.Resize((336, 336)),
49
+ T.ToTensor(),
50
+ T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
51
+ ])
52
+
53
+ def predict_image(self, image: np.ndarray) -> list():
54
+ """Run inference using ONNX runtime.
55
+
56
+ :param image: Input image as numpy array.
57
+ :return: A list with logits and confidences.
58
+ """
59
+
60
+ logits = self.model(
61
+ self.transforms(image).unsqueeze(0).to(self.device))
62
+
63
+ return logits.tolist()
64
+
65
+
66
+ def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
67
+ """Make submission with given """
68
+
69
+ model = PytorchWorker(model_path, model_name)
70
+
71
+ predictions = []
72
+
73
+ for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
74
+ image_path = os.path.join(images_root_path, row.image_path)
75
+
76
+ test_image = Image.open(image_path).convert("RGB")
77
+
78
+ logits = model.predict_image(test_image)
79
+
80
+ predictions.append(np.argmax(logits))
81
+
82
+
83
+ test_metadata["class_id"] = predictions
84
+
85
+ user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
86
+ user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)
87
+
88
+ if __name__ == "__main__":
89
+
90
+ import zipfile
91
+
92
+ with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
93
+ zip_ref.extractall("/tmp/data")
94
+
95
+ MODEL_PATH = "pytorch_model.bin"
96
+ MODEL_NAME = "hf-hub:timm/eva02_large_patch14_clip_336.merged2b_ft_inat21"
97
+
98
+ metadata_file_path = "./SnakeCLEF2024_TestMetadata.csv"
99
+ test_metadata = pd.read_csv(metadata_file_path)
100
+
101
+ # metadata_file_path = "./unit_test.csv"
102
+ # test_metadata = pd.read_csv(metadata_file_path)
103
+ # images_root_path = "SnakeCLEF2023-large_size"
104
+
105
+ make_submission(
106
+ test_metadata=test_metadata,
107
+ model_path=MODEL_PATH,
108
+ model_name=MODEL_NAME,
109
+ )