from transformers import PretrainedConfig from typing import List class ResnetConfig(PretrainedConfig): model_type = "resin" def __init__( self, block_type="bottleneck", layers: List[int] = [3, 4, 6, 3], num_classes: int = 1000, input_channels: int = 3, cardinality: int = 1, base_width: int = 64, stem_width: int = 64, stem_type: str = "", avg_down: bool = False, **kwargs, ): if block_type not in ["basic", "bottleneck"]: raise ValueError( f"`block_type` must be 'basic' or bottleneck', got {block_type}." ) if stem_type not in ["", "deep", "deep-tiered"]: raise ValueError( f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}." ) self.block_type = block_type self.layers = layers self.num_classes = num_classes self.input_channels = input_channels self.cardinality = cardinality self.base_width = base_width self.stem_width = stem_width self.stem_type = stem_type self.avg_down = avg_down super().__init__(**kwargs)