fatcat22 commited on
Commit
1afde1b
1 Parent(s): a2a9182

Upload PPO trained agent for LunarLander-v2

Browse files
PPO_Model_Lunar.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e6d97f40141586d65b6d54f0bfbb4cdff03c68b7b0681a1e9a2f1c559499091
3
+ size 146759
PPO_Model_Lunar/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
PPO_Model_Lunar/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f900f4c4550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f900f4c45e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f900f4c4670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f900f4c4700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f900f4c4790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f900f4c4820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f900f4c48b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f900f4c4940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f900f4c49d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f900f4c4a60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f900f4c4af0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f900f4c4b80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f900f4b7f00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1685629679406153419,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJozWTzecG0/aKSXvY8xor5lGTK9cfsqvQAAAAAAAAAAzR3oPU4UdT/T2G69HR+MvjfOsz3DbOK9AAAAAAAAAACasVc7AUGOPZBdoT0xAh2+r5f+PB3fYT0AAAAAAAAAAGZGVbx7Zqa6Rot3tkBNaLEmUVE6q8yTNQAAgD8AAIA/AMAGOn6A1D4WBII8RA1Jvrsnp7xrimC9AAAAAAAAAAAz2aA9TFOfP4YppD6KN7G+oZvzPYLRQz4AAAAAAAAAAAAwu7pIhZu63qnDOgRWkTWjiAq72PHhuQAAgD8AAIA/xgM+vmQNOz/oDtw9U098vu5r+rybX5E9AAAAAAAAAACzOwo+qjmWP/e+LT0PkXm+Uw9KPjF6x7wAAAAAAAAAAI27Ob4jRz0/zlxKPcbDnb4C5q+9DV6NPQAAAAAAAAAAwBIpvswXkT6RsUE+ls9/vus1RTy+of+8AAAAAAAAAACzSiy9Y7BEPfhxVDs1voG+hFIYvY+zir0AAAAAAAAAACZdub1CElY+SJCXPZ7hab7tQEc8wu9MPQAAAAAAAAAAmAySvjGKXD/yIHW9aVyQvntZQL5JIyc8AAAAAAAAAACaue870j/Gu646L7wRwyc8yrURPUAJEr0AAIA/AACAP5pvHL1cUQ+8+r49PUa5jb3sZlI9C/utPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH6PTkQwsaMAWyUTWIBjAF0lEdAl3ndP557gXV9lChoBkdAb6qQLeANG2gHTXIBaAhHQJeK1PSDyvt1fZQoaAZHQHCtR+WnjyZoB00nAWgIR0CXi998JD3NdX2UKGgGR0BxLR/jKgZkaAdNXwFoCEdAl4yWPcSGrXV9lChoBkdAcCPQN0/4ZmgHTVoBaAhHQJeNPSeAd4p1fZQoaAZHQGx0zMRpUPxoB01HAWgIR0CXjem2LHdXdX2UKGgGR0BwiJr9ETg3aAdNMwFoCEdAl47zz3AVPHV9lChoBkdAbk50Eovzv2gHTU8BaAhHQJeQI4VARkF1fZQoaAZHQHAr66z3RHBoB01bAWgIR0CXkWPn0TURdX2UKGgGR0BwOE+EAYHgaAdNVgFoCEdAl5ILhisnzHV9lChoBkdAcQmTrVvuPWgHTVkBaAhHQJeTGTKT0QN1fZQoaAZHQHG/60pmVZ9oB01rAWgIR0CXk0ZtvXK9dX2UKGgGR0BxC/PPcBU8aAdNMAFoCEdAl5Oo1k1/D3V9lChoBkdAazCJUHY6GWgHTUQBaAhHQJeTva9K28Z1fZQoaAZHQHA1rs0HhS9oB01MAWgIR0CXlKoPCl7/dX2UKGgGR0BvKib6P8yfaAdNPQFoCEdAl5TC6MBIWnV9lChoBkdAbuMAPNFBp2gHTTYBaAhHQJeVq+xnnMd1fZQoaAZHQGysEHD7655oB00yAWgIR0CXlyhOgxrSdX2UKGgGR0BxwUHiWE9MaAdNWQFoCEdAl5e9aY/mknV9lChoBkdAb3gi2UjcEmgHTTQBaAhHQJeXxtxdY4h1fZQoaAZHQG7EH62v0RRoB00XA2gIR0CXl/ND+irUdX2UKGgGR0BtQNZs9B8haAdNOgFoCEdAl5h5qM3qA3V9lChoBkdAcef5uqFRHmgHTSQBaAhHQJeZuEpRXOp1fZQoaAZHQG6S7Hp8neBoB01XAWgIR0CXmlISlFc6dX2UKGgGR0BwVTSH/LkkaAdNSwFoCEdAl5yxbOeJ53V9lChoBkdAcaDGPgeijGgHTR0BaAhHQJedlH+ZPVN1fZQoaAZHQHHevfCQ9zRoB00kAWgIR0CXngPIn0CjdX2UKGgGR0BwsImG/N7jaAdNeAFoCEdAl5/6cNH6M3V9lChoBkdAb9mBjnV5KWgHTVwBaAhHQJegGHzpX6t1fZQoaAZHQHEo+G0u14RoB01gAWgIR0CXoIiaiKzidX2UKGgGR0BxQNPl+3H8aAdNOwFoCEdAl6DBwAEMb3V9lChoBkdAcKqRPXTVlWgHTU0BaAhHQJehnTw2ETR1fZQoaAZHQGrAYZ2pyZNoB01fAWgIR0CXo8MgEEDAdX2UKGgGR0BvOjBqKxcFaAdNPQFoCEdAl6Rg5R0lq3V9lChoBkdAcFiPvKEFn2gHTTUBaAhHQJemMMqjJuF1fZQoaAZHQHFimDUVi4JoB01OAWgIR0CXpjGy5Zr6dX2UKGgGR0Bw+viZOSGKaAdNSQFoCEdAl6ZLHyVfNXV9lChoBkdAbB5jkMkQgGgHTWwBaAhHQJenlBmf5DZ1fZQoaAZHQHJSi9/SYw9oB00hAWgIR0CXqAYSg5BDdX2UKGgGR0Brir2SMcZMaAdNWgFoCEdAl6n6ArhBJXV9lChoBkdAcTsDr7fpEGgHTTIBaAhHQJerycDr7fp1fZQoaAZHQHLnLFGXokloB01BAWgIR0CXrYWVu76IdX2UKGgGR0BwEqUA1ejVaAdNSgFoCEdAl65GBz3h43V9lChoBkdAcBufQa72+WgHTS0BaAhHQJeuiPsAvL51fZQoaAZHQHJ29TxXnyNoB00zAWgIR0CXrxxyn1nNdX2UKGgGR0BwDtjz7MxHaAdNUwFoCEdAl6/ndj5KvnV9lChoBkdAcnuCzC1qnGgHTVABaAhHQJewRp9JBgN1fZQoaAZHQHKOciB5HExoB01HAWgIR0CXsLDsMRYjdX2UKGgGR0BwJzI3irDJaAdNNgFoCEdAl7G1PznRs3V9lChoBkdAbXZXMhX8wmgHTVIBaAhHQJfDLHmzSkV1fZQoaAZHQHGsQ9eQdS5oB00+AWgIR0CXw9TQE6kqdX2UKGgGR0BuKVaOgg5jaAdNSAFoCEdAl8QkSqU/wHV9lChoBkdAcrKhUzbeuWgHTSQBaAhHQJfEPxtpEhJ1fZQoaAZHQHAz52IO6NFoB00/AWgIR0CXxMPBzmwJdX2UKGgGR0BxJztPYWcjaAdNZQFoCEdAl8UMcABDHHV9lChoBkdAb7T4NZvDQGgHTTcBaAhHQJfF8/gR9PV1fZQoaAZHQHJowqqfe1toB002AWgIR0CXxutXgccVdX2UKGgGR0ByFe5WilBQaAdNNAFoCEdAl8h7k0aZQnV9lChoBkdAcET7ZWaMJmgHTU8BaAhHQJfIzMC9ytF1fZQoaAZHQG9WAB1cMVloB000AWgIR0CXyUISlFc6dX2UKGgGR0BwjuY0EX+EaAdNRgFoCEdAl8lN7jT8YXV9lChoBkdAcoDVAiV0LmgHTTUBaAhHQJfKTAAQxvh1fZQoaAZHQHKFPRzBAOdoB01rAWgIR0CXy9toSL62dX2UKGgGR0BuhEpsoDxLaAdNHwFoCEdAl8yETlDF63V9lChoBkdAcHcRSxZ+yGgHTVUBaAhHQJfNAlAu7H11fZQoaAZHQHB1ifYjB2xoB013AWgIR0CXzSlpXZGsdX2UKGgGR0BxSgbLlmvoaAdNOgFoCEdAl85UjcEeQ3V9lChoBkdAbQdWCEpRXWgHTTwBaAhHQJfOfQWvbGp1fZQoaAZHQGyT6l+EytVoB00zAWgIR0CXzrw5NoJzdX2UKGgGR0BuS79wWFewaAdNTwFoCEdAl866TOgQH3V9lChoBkdAcQ/xgRbr1WgHTVIBaAhHQJfPyLk0aZR1fZQoaAZHQGrIMPBi1AtoB01SAWgIR0CX0K1hLGrCdX2UKGgGR0ByPaWt2cJ/aAdNQQFoCEdAl9Ebw8W9DnV9lChoBkdAbVY4xUNrkGgHTSQBaAhHQJfRrm9xp+N1fZQoaAZHQHHH53PiT+xoB00tAWgIR0CX0rnr6ciGdX2UKGgGR0Bx0ryH2ys0aAdNRgFoCEdAl9MKC+UQkHV9lChoBkdAcH+L3bmEG2gHTVsBaAhHQJfUSrYGt6p1fZQoaAZHQG1GOuieumtoB01FAWgIR0CX1LuIyj59dX2UKGgGR0BwhUod+5OKaAdNOQFoCEdAl9XXBHkLhXV9lChoBkdAcHmMR6F/QWgHTSsBaAhHQJfWAZVGTcJ1fZQoaAZHQGtoclgMMJBoB00rAWgIR0CX1t8Nx2jgdX2UKGgGR0Bw6bbypaRqaAdNFgFoCEdAl9eALJCBw3V9lChoBkdAbGiokRjBmGgHTU4BaAhHQJfYPSc9W6t1fZQoaAZHQG73XnZCfHxoB006AWgIR0CX2baOxSpBdX2UKGgGR0BsonM2WIGhaAdNNQFoCEdAl9tuokzGgnV9lChoBkdAcNCbW3BpH2gHTW8BaAhHQJfcRvvSc9Z1fZQoaAZHQHIwDt1IRRNoB00oAWgIR0CX3FO3lS0jdX2UKGgGR0BvgszbeuV5aAdNMgFoCEdAl95vjKgZj3V9lChoBkdAbe50jC53DGgHTUcBaAhHQJfefulXRw91fZQoaAZHQG3PKiGnGbVoB02nAWgIR0CX3o15jYqYdX2UKGgGR0Bwx0/SpiqiaAdNNAFoCEdAl+AJ/9YOlXV9lChoBkdAcK8Q/HHWBmgHTT0BaAhHQJfg82ETQE91fZQoaAZHQHCshIe5nUVoB004AWgIR0CX47FERaoudX2UKGgGR0Bww7NliBoVaAdNLwFoCEdAl+VrZi/fwnV9lChoBkdAcXuwCbMHKWgHTSkBaAhHQJfm76fra/R1fZQoaAZHQG6H5uAI6bRoB01LAWgIR0CX5wrpaA4GdX2UKGgGR0Bw8F71Iy0saAdNJAFoCEdAl+eCpeeFtnV9lChoBkdAbw89TP0I1WgHTUUBaAhHQJfnpcJMQEp1fZQoaAZHQG2sqH446wNoB02QAWgIR0CX6IkQf6oEdX2UKGgGR0BwabPZ7HAAaAdNRwFoCEdAl+nKbz9S/HVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
PPO_Model_Lunar/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a281c4dc70d69084452ba26163c148ac8c0ffc0ed0995dd3d555999db8930a22
3
+ size 87929
PPO_Model_Lunar/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6be866f3f32d0849f268f14306dd28dd999222cf7c2af180e9770ca6b2e976c
3
+ size 43329
PPO_Model_Lunar/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO_Model_Lunar/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 245.61 +/- 29.04
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f900f4c4550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f900f4c45e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f900f4c4670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f900f4c4700>", "_build": "<function ActorCriticPolicy._build at 0x7f900f4c4790>", "forward": "<function ActorCriticPolicy.forward at 0x7f900f4c4820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f900f4c48b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f900f4c4940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f900f4c49d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f900f4c4a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f900f4c4af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f900f4c4b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f900f4b7f00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685629679406153419, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJozWTzecG0/aKSXvY8xor5lGTK9cfsqvQAAAAAAAAAAzR3oPU4UdT/T2G69HR+MvjfOsz3DbOK9AAAAAAAAAACasVc7AUGOPZBdoT0xAh2+r5f+PB3fYT0AAAAAAAAAAGZGVbx7Zqa6Rot3tkBNaLEmUVE6q8yTNQAAgD8AAIA/AMAGOn6A1D4WBII8RA1Jvrsnp7xrimC9AAAAAAAAAAAz2aA9TFOfP4YppD6KN7G+oZvzPYLRQz4AAAAAAAAAAAAwu7pIhZu63qnDOgRWkTWjiAq72PHhuQAAgD8AAIA/xgM+vmQNOz/oDtw9U098vu5r+rybX5E9AAAAAAAAAACzOwo+qjmWP/e+LT0PkXm+Uw9KPjF6x7wAAAAAAAAAAI27Ob4jRz0/zlxKPcbDnb4C5q+9DV6NPQAAAAAAAAAAwBIpvswXkT6RsUE+ls9/vus1RTy+of+8AAAAAAAAAACzSiy9Y7BEPfhxVDs1voG+hFIYvY+zir0AAAAAAAAAACZdub1CElY+SJCXPZ7hab7tQEc8wu9MPQAAAAAAAAAAmAySvjGKXD/yIHW9aVyQvntZQL5JIyc8AAAAAAAAAACaue870j/Gu646L7wRwyc8yrURPUAJEr0AAIA/AACAP5pvHL1cUQ+8+r49PUa5jb3sZlI9C/utPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH6PTkQwsaMAWyUTWIBjAF0lEdAl3ndP557gXV9lChoBkdAb6qQLeANG2gHTXIBaAhHQJeK1PSDyvt1fZQoaAZHQHCtR+WnjyZoB00nAWgIR0CXi998JD3NdX2UKGgGR0BxLR/jKgZkaAdNXwFoCEdAl4yWPcSGrXV9lChoBkdAcCPQN0/4ZmgHTVoBaAhHQJeNPSeAd4p1fZQoaAZHQGx0zMRpUPxoB01HAWgIR0CXjem2LHdXdX2UKGgGR0BwiJr9ETg3aAdNMwFoCEdAl47zz3AVPHV9lChoBkdAbk50Eovzv2gHTU8BaAhHQJeQI4VARkF1fZQoaAZHQHAr66z3RHBoB01bAWgIR0CXkWPn0TURdX2UKGgGR0BwOE+EAYHgaAdNVgFoCEdAl5ILhisnzHV9lChoBkdAcQmTrVvuPWgHTVkBaAhHQJeTGTKT0QN1fZQoaAZHQHG/60pmVZ9oB01rAWgIR0CXk0ZtvXK9dX2UKGgGR0BxC/PPcBU8aAdNMAFoCEdAl5Oo1k1/D3V9lChoBkdAazCJUHY6GWgHTUQBaAhHQJeTva9K28Z1fZQoaAZHQHA1rs0HhS9oB01MAWgIR0CXlKoPCl7/dX2UKGgGR0BvKib6P8yfaAdNPQFoCEdAl5TC6MBIWnV9lChoBkdAbuMAPNFBp2gHTTYBaAhHQJeVq+xnnMd1fZQoaAZHQGysEHD7655oB00yAWgIR0CXlyhOgxrSdX2UKGgGR0BxwUHiWE9MaAdNWQFoCEdAl5e9aY/mknV9lChoBkdAb3gi2UjcEmgHTTQBaAhHQJeXxtxdY4h1fZQoaAZHQG7EH62v0RRoB00XA2gIR0CXl/ND+irUdX2UKGgGR0BtQNZs9B8haAdNOgFoCEdAl5h5qM3qA3V9lChoBkdAcef5uqFRHmgHTSQBaAhHQJeZuEpRXOp1fZQoaAZHQG6S7Hp8neBoB01XAWgIR0CXmlISlFc6dX2UKGgGR0BwVTSH/LkkaAdNSwFoCEdAl5yxbOeJ53V9lChoBkdAcaDGPgeijGgHTR0BaAhHQJedlH+ZPVN1fZQoaAZHQHHevfCQ9zRoB00kAWgIR0CXngPIn0CjdX2UKGgGR0BwsImG/N7jaAdNeAFoCEdAl5/6cNH6M3V9lChoBkdAb9mBjnV5KWgHTVwBaAhHQJegGHzpX6t1fZQoaAZHQHEo+G0u14RoB01gAWgIR0CXoIiaiKzidX2UKGgGR0BxQNPl+3H8aAdNOwFoCEdAl6DBwAEMb3V9lChoBkdAcKqRPXTVlWgHTU0BaAhHQJehnTw2ETR1fZQoaAZHQGrAYZ2pyZNoB01fAWgIR0CXo8MgEEDAdX2UKGgGR0BvOjBqKxcFaAdNPQFoCEdAl6Rg5R0lq3V9lChoBkdAcFiPvKEFn2gHTTUBaAhHQJemMMqjJuF1fZQoaAZHQHFimDUVi4JoB01OAWgIR0CXpjGy5Zr6dX2UKGgGR0Bw+viZOSGKaAdNSQFoCEdAl6ZLHyVfNXV9lChoBkdAbB5jkMkQgGgHTWwBaAhHQJenlBmf5DZ1fZQoaAZHQHJSi9/SYw9oB00hAWgIR0CXqAYSg5BDdX2UKGgGR0Brir2SMcZMaAdNWgFoCEdAl6n6ArhBJXV9lChoBkdAcTsDr7fpEGgHTTIBaAhHQJerycDr7fp1fZQoaAZHQHLnLFGXokloB01BAWgIR0CXrYWVu76IdX2UKGgGR0BwEqUA1ejVaAdNSgFoCEdAl65GBz3h43V9lChoBkdAcBufQa72+WgHTS0BaAhHQJeuiPsAvL51fZQoaAZHQHJ29TxXnyNoB00zAWgIR0CXrxxyn1nNdX2UKGgGR0BwDtjz7MxHaAdNUwFoCEdAl6/ndj5KvnV9lChoBkdAcnuCzC1qnGgHTVABaAhHQJewRp9JBgN1fZQoaAZHQHKOciB5HExoB01HAWgIR0CXsLDsMRYjdX2UKGgGR0BwJzI3irDJaAdNNgFoCEdAl7G1PznRs3V9lChoBkdAbXZXMhX8wmgHTVIBaAhHQJfDLHmzSkV1fZQoaAZHQHGsQ9eQdS5oB00+AWgIR0CXw9TQE6kqdX2UKGgGR0BuKVaOgg5jaAdNSAFoCEdAl8QkSqU/wHV9lChoBkdAcrKhUzbeuWgHTSQBaAhHQJfEPxtpEhJ1fZQoaAZHQHAz52IO6NFoB00/AWgIR0CXxMPBzmwJdX2UKGgGR0BxJztPYWcjaAdNZQFoCEdAl8UMcABDHHV9lChoBkdAb7T4NZvDQGgHTTcBaAhHQJfF8/gR9PV1fZQoaAZHQHJowqqfe1toB002AWgIR0CXxutXgccVdX2UKGgGR0ByFe5WilBQaAdNNAFoCEdAl8h7k0aZQnV9lChoBkdAcET7ZWaMJmgHTU8BaAhHQJfIzMC9ytF1fZQoaAZHQG9WAB1cMVloB000AWgIR0CXyUISlFc6dX2UKGgGR0BwjuY0EX+EaAdNRgFoCEdAl8lN7jT8YXV9lChoBkdAcoDVAiV0LmgHTTUBaAhHQJfKTAAQxvh1fZQoaAZHQHKFPRzBAOdoB01rAWgIR0CXy9toSL62dX2UKGgGR0BuhEpsoDxLaAdNHwFoCEdAl8yETlDF63V9lChoBkdAcHcRSxZ+yGgHTVUBaAhHQJfNAlAu7H11fZQoaAZHQHB1ifYjB2xoB013AWgIR0CXzSlpXZGsdX2UKGgGR0BxSgbLlmvoaAdNOgFoCEdAl85UjcEeQ3V9lChoBkdAbQdWCEpRXWgHTTwBaAhHQJfOfQWvbGp1fZQoaAZHQGyT6l+EytVoB00zAWgIR0CXzrw5NoJzdX2UKGgGR0BuS79wWFewaAdNTwFoCEdAl866TOgQH3V9lChoBkdAcQ/xgRbr1WgHTVIBaAhHQJfPyLk0aZR1fZQoaAZHQGrIMPBi1AtoB01SAWgIR0CX0K1hLGrCdX2UKGgGR0ByPaWt2cJ/aAdNQQFoCEdAl9Ebw8W9DnV9lChoBkdAbVY4xUNrkGgHTSQBaAhHQJfRrm9xp+N1fZQoaAZHQHHH53PiT+xoB00tAWgIR0CX0rnr6ciGdX2UKGgGR0Bx0ryH2ys0aAdNRgFoCEdAl9MKC+UQkHV9lChoBkdAcH+L3bmEG2gHTVsBaAhHQJfUSrYGt6p1fZQoaAZHQG1GOuieumtoB01FAWgIR0CX1LuIyj59dX2UKGgGR0BwhUod+5OKaAdNOQFoCEdAl9XXBHkLhXV9lChoBkdAcHmMR6F/QWgHTSsBaAhHQJfWAZVGTcJ1fZQoaAZHQGtoclgMMJBoB00rAWgIR0CX1t8Nx2jgdX2UKGgGR0Bw6bbypaRqaAdNFgFoCEdAl9eALJCBw3V9lChoBkdAbGiokRjBmGgHTU4BaAhHQJfYPSc9W6t1fZQoaAZHQG73XnZCfHxoB006AWgIR0CX2baOxSpBdX2UKGgGR0BsonM2WIGhaAdNNQFoCEdAl9tuokzGgnV9lChoBkdAcNCbW3BpH2gHTW8BaAhHQJfcRvvSc9Z1fZQoaAZHQHIwDt1IRRNoB00oAWgIR0CX3FO3lS0jdX2UKGgGR0BvgszbeuV5aAdNMgFoCEdAl95vjKgZj3V9lChoBkdAbe50jC53DGgHTUcBaAhHQJfefulXRw91fZQoaAZHQG3PKiGnGbVoB02nAWgIR0CX3o15jYqYdX2UKGgGR0Bwx0/SpiqiaAdNNAFoCEdAl+AJ/9YOlXV9lChoBkdAcK8Q/HHWBmgHTT0BaAhHQJfg82ETQE91fZQoaAZHQHCshIe5nUVoB004AWgIR0CX47FERaoudX2UKGgGR0Bww7NliBoVaAdNLwFoCEdAl+VrZi/fwnV9lChoBkdAcXuwCbMHKWgHTSkBaAhHQJfm76fra/R1fZQoaAZHQG6H5uAI6bRoB01LAWgIR0CX5wrpaA4GdX2UKGgGR0Bw8F71Iy0saAdNJAFoCEdAl+eCpeeFtnV9lChoBkdAbw89TP0I1WgHTUUBaAhHQJfnpcJMQEp1fZQoaAZHQG2sqH446wNoB02QAWgIR0CX6IkQf6oEdX2UKGgGR0BwabPZ7HAAaAdNRwFoCEdAl+nKbz9S/HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (179 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 245.60675807618495, "std_reward": 29.041840940061217, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-01T15:01:58.203340"}