Upload PPO trained agent for LunarLander-v2
Browse files- PPO_Model_Lunar.zip +3 -0
- PPO_Model_Lunar/_stable_baselines3_version +1 -0
- PPO_Model_Lunar/data +99 -0
- PPO_Model_Lunar/policy.optimizer.pth +3 -0
- PPO_Model_Lunar/policy.pth +3 -0
- PPO_Model_Lunar/pytorch_variables.pth +3 -0
- PPO_Model_Lunar/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO_Model_Lunar.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e6d97f40141586d65b6d54f0bfbb4cdff03c68b7b0681a1e9a2f1c559499091
|
3 |
+
size 146759
|
PPO_Model_Lunar/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
PPO_Model_Lunar/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f900f4c4550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f900f4c45e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f900f4c4670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f900f4c4700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f900f4c4790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f900f4c4820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f900f4c48b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f900f4c4940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f900f4c49d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f900f4c4a60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f900f4c4af0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f900f4c4b80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f900f4b7f00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1685629679406153419,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJozWTzecG0/aKSXvY8xor5lGTK9cfsqvQAAAAAAAAAAzR3oPU4UdT/T2G69HR+MvjfOsz3DbOK9AAAAAAAAAACasVc7AUGOPZBdoT0xAh2+r5f+PB3fYT0AAAAAAAAAAGZGVbx7Zqa6Rot3tkBNaLEmUVE6q8yTNQAAgD8AAIA/AMAGOn6A1D4WBII8RA1Jvrsnp7xrimC9AAAAAAAAAAAz2aA9TFOfP4YppD6KN7G+oZvzPYLRQz4AAAAAAAAAAAAwu7pIhZu63qnDOgRWkTWjiAq72PHhuQAAgD8AAIA/xgM+vmQNOz/oDtw9U098vu5r+rybX5E9AAAAAAAAAACzOwo+qjmWP/e+LT0PkXm+Uw9KPjF6x7wAAAAAAAAAAI27Ob4jRz0/zlxKPcbDnb4C5q+9DV6NPQAAAAAAAAAAwBIpvswXkT6RsUE+ls9/vus1RTy+of+8AAAAAAAAAACzSiy9Y7BEPfhxVDs1voG+hFIYvY+zir0AAAAAAAAAACZdub1CElY+SJCXPZ7hab7tQEc8wu9MPQAAAAAAAAAAmAySvjGKXD/yIHW9aVyQvntZQL5JIyc8AAAAAAAAAACaue870j/Gu646L7wRwyc8yrURPUAJEr0AAIA/AACAP5pvHL1cUQ+8+r49PUa5jb3sZlI9C/utPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH6PTkQwsaMAWyUTWIBjAF0lEdAl3ndP557gXV9lChoBkdAb6qQLeANG2gHTXIBaAhHQJeK1PSDyvt1fZQoaAZHQHCtR+WnjyZoB00nAWgIR0CXi998JD3NdX2UKGgGR0BxLR/jKgZkaAdNXwFoCEdAl4yWPcSGrXV9lChoBkdAcCPQN0/4ZmgHTVoBaAhHQJeNPSeAd4p1fZQoaAZHQGx0zMRpUPxoB01HAWgIR0CXjem2LHdXdX2UKGgGR0BwiJr9ETg3aAdNMwFoCEdAl47zz3AVPHV9lChoBkdAbk50Eovzv2gHTU8BaAhHQJeQI4VARkF1fZQoaAZHQHAr66z3RHBoB01bAWgIR0CXkWPn0TURdX2UKGgGR0BwOE+EAYHgaAdNVgFoCEdAl5ILhisnzHV9lChoBkdAcQmTrVvuPWgHTVkBaAhHQJeTGTKT0QN1fZQoaAZHQHG/60pmVZ9oB01rAWgIR0CXk0ZtvXK9dX2UKGgGR0BxC/PPcBU8aAdNMAFoCEdAl5Oo1k1/D3V9lChoBkdAazCJUHY6GWgHTUQBaAhHQJeTva9K28Z1fZQoaAZHQHA1rs0HhS9oB01MAWgIR0CXlKoPCl7/dX2UKGgGR0BvKib6P8yfaAdNPQFoCEdAl5TC6MBIWnV9lChoBkdAbuMAPNFBp2gHTTYBaAhHQJeVq+xnnMd1fZQoaAZHQGysEHD7655oB00yAWgIR0CXlyhOgxrSdX2UKGgGR0BxwUHiWE9MaAdNWQFoCEdAl5e9aY/mknV9lChoBkdAb3gi2UjcEmgHTTQBaAhHQJeXxtxdY4h1fZQoaAZHQG7EH62v0RRoB00XA2gIR0CXl/ND+irUdX2UKGgGR0BtQNZs9B8haAdNOgFoCEdAl5h5qM3qA3V9lChoBkdAcef5uqFRHmgHTSQBaAhHQJeZuEpRXOp1fZQoaAZHQG6S7Hp8neBoB01XAWgIR0CXmlISlFc6dX2UKGgGR0BwVTSH/LkkaAdNSwFoCEdAl5yxbOeJ53V9lChoBkdAcaDGPgeijGgHTR0BaAhHQJedlH+ZPVN1fZQoaAZHQHHevfCQ9zRoB00kAWgIR0CXngPIn0CjdX2UKGgGR0BwsImG/N7jaAdNeAFoCEdAl5/6cNH6M3V9lChoBkdAb9mBjnV5KWgHTVwBaAhHQJegGHzpX6t1fZQoaAZHQHEo+G0u14RoB01gAWgIR0CXoIiaiKzidX2UKGgGR0BxQNPl+3H8aAdNOwFoCEdAl6DBwAEMb3V9lChoBkdAcKqRPXTVlWgHTU0BaAhHQJehnTw2ETR1fZQoaAZHQGrAYZ2pyZNoB01fAWgIR0CXo8MgEEDAdX2UKGgGR0BvOjBqKxcFaAdNPQFoCEdAl6Rg5R0lq3V9lChoBkdAcFiPvKEFn2gHTTUBaAhHQJemMMqjJuF1fZQoaAZHQHFimDUVi4JoB01OAWgIR0CXpjGy5Zr6dX2UKGgGR0Bw+viZOSGKaAdNSQFoCEdAl6ZLHyVfNXV9lChoBkdAbB5jkMkQgGgHTWwBaAhHQJenlBmf5DZ1fZQoaAZHQHJSi9/SYw9oB00hAWgIR0CXqAYSg5BDdX2UKGgGR0Brir2SMcZMaAdNWgFoCEdAl6n6ArhBJXV9lChoBkdAcTsDr7fpEGgHTTIBaAhHQJerycDr7fp1fZQoaAZHQHLnLFGXokloB01BAWgIR0CXrYWVu76IdX2UKGgGR0BwEqUA1ejVaAdNSgFoCEdAl65GBz3h43V9lChoBkdAcBufQa72+WgHTS0BaAhHQJeuiPsAvL51fZQoaAZHQHJ29TxXnyNoB00zAWgIR0CXrxxyn1nNdX2UKGgGR0BwDtjz7MxHaAdNUwFoCEdAl6/ndj5KvnV9lChoBkdAcnuCzC1qnGgHTVABaAhHQJewRp9JBgN1fZQoaAZHQHKOciB5HExoB01HAWgIR0CXsLDsMRYjdX2UKGgGR0BwJzI3irDJaAdNNgFoCEdAl7G1PznRs3V9lChoBkdAbXZXMhX8wmgHTVIBaAhHQJfDLHmzSkV1fZQoaAZHQHGsQ9eQdS5oB00+AWgIR0CXw9TQE6kqdX2UKGgGR0BuKVaOgg5jaAdNSAFoCEdAl8QkSqU/wHV9lChoBkdAcrKhUzbeuWgHTSQBaAhHQJfEPxtpEhJ1fZQoaAZHQHAz52IO6NFoB00/AWgIR0CXxMPBzmwJdX2UKGgGR0BxJztPYWcjaAdNZQFoCEdAl8UMcABDHHV9lChoBkdAb7T4NZvDQGgHTTcBaAhHQJfF8/gR9PV1fZQoaAZHQHJowqqfe1toB002AWgIR0CXxutXgccVdX2UKGgGR0ByFe5WilBQaAdNNAFoCEdAl8h7k0aZQnV9lChoBkdAcET7ZWaMJmgHTU8BaAhHQJfIzMC9ytF1fZQoaAZHQG9WAB1cMVloB000AWgIR0CXyUISlFc6dX2UKGgGR0BwjuY0EX+EaAdNRgFoCEdAl8lN7jT8YXV9lChoBkdAcoDVAiV0LmgHTTUBaAhHQJfKTAAQxvh1fZQoaAZHQHKFPRzBAOdoB01rAWgIR0CXy9toSL62dX2UKGgGR0BuhEpsoDxLaAdNHwFoCEdAl8yETlDF63V9lChoBkdAcHcRSxZ+yGgHTVUBaAhHQJfNAlAu7H11fZQoaAZHQHB1ifYjB2xoB013AWgIR0CXzSlpXZGsdX2UKGgGR0BxSgbLlmvoaAdNOgFoCEdAl85UjcEeQ3V9lChoBkdAbQdWCEpRXWgHTTwBaAhHQJfOfQWvbGp1fZQoaAZHQGyT6l+EytVoB00zAWgIR0CXzrw5NoJzdX2UKGgGR0BuS79wWFewaAdNTwFoCEdAl866TOgQH3V9lChoBkdAcQ/xgRbr1WgHTVIBaAhHQJfPyLk0aZR1fZQoaAZHQGrIMPBi1AtoB01SAWgIR0CX0K1hLGrCdX2UKGgGR0ByPaWt2cJ/aAdNQQFoCEdAl9Ebw8W9DnV9lChoBkdAbVY4xUNrkGgHTSQBaAhHQJfRrm9xp+N1fZQoaAZHQHHH53PiT+xoB00tAWgIR0CX0rnr6ciGdX2UKGgGR0Bx0ryH2ys0aAdNRgFoCEdAl9MKC+UQkHV9lChoBkdAcH+L3bmEG2gHTVsBaAhHQJfUSrYGt6p1fZQoaAZHQG1GOuieumtoB01FAWgIR0CX1LuIyj59dX2UKGgGR0BwhUod+5OKaAdNOQFoCEdAl9XXBHkLhXV9lChoBkdAcHmMR6F/QWgHTSsBaAhHQJfWAZVGTcJ1fZQoaAZHQGtoclgMMJBoB00rAWgIR0CX1t8Nx2jgdX2UKGgGR0Bw6bbypaRqaAdNFgFoCEdAl9eALJCBw3V9lChoBkdAbGiokRjBmGgHTU4BaAhHQJfYPSc9W6t1fZQoaAZHQG73XnZCfHxoB006AWgIR0CX2baOxSpBdX2UKGgGR0BsonM2WIGhaAdNNQFoCEdAl9tuokzGgnV9lChoBkdAcNCbW3BpH2gHTW8BaAhHQJfcRvvSc9Z1fZQoaAZHQHIwDt1IRRNoB00oAWgIR0CX3FO3lS0jdX2UKGgGR0BvgszbeuV5aAdNMgFoCEdAl95vjKgZj3V9lChoBkdAbe50jC53DGgHTUcBaAhHQJfefulXRw91fZQoaAZHQG3PKiGnGbVoB02nAWgIR0CX3o15jYqYdX2UKGgGR0Bwx0/SpiqiaAdNNAFoCEdAl+AJ/9YOlXV9lChoBkdAcK8Q/HHWBmgHTT0BaAhHQJfg82ETQE91fZQoaAZHQHCshIe5nUVoB004AWgIR0CX47FERaoudX2UKGgGR0Bww7NliBoVaAdNLwFoCEdAl+VrZi/fwnV9lChoBkdAcXuwCbMHKWgHTSkBaAhHQJfm76fra/R1fZQoaAZHQG6H5uAI6bRoB01LAWgIR0CX5wrpaA4GdX2UKGgGR0Bw8F71Iy0saAdNJAFoCEdAl+eCpeeFtnV9lChoBkdAbw89TP0I1WgHTUUBaAhHQJfnpcJMQEp1fZQoaAZHQG2sqH446wNoB02QAWgIR0CX6IkQf6oEdX2UKGgGR0BwabPZ7HAAaAdNRwFoCEdAl+nKbz9S/HVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
PPO_Model_Lunar/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a281c4dc70d69084452ba26163c148ac8c0ffc0ed0995dd3d555999db8930a22
|
3 |
+
size 87929
|
PPO_Model_Lunar/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6be866f3f32d0849f268f14306dd28dd999222cf7c2af180e9770ca6b2e976c
|
3 |
+
size 43329
|
PPO_Model_Lunar/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO_Model_Lunar/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 245.61 +/- 29.04
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f900f4c4550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f900f4c45e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f900f4c4670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f900f4c4700>", "_build": "<function ActorCriticPolicy._build at 0x7f900f4c4790>", "forward": "<function ActorCriticPolicy.forward at 0x7f900f4c4820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f900f4c48b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f900f4c4940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f900f4c49d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f900f4c4a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f900f4c4af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f900f4c4b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f900f4b7f00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685629679406153419, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJozWTzecG0/aKSXvY8xor5lGTK9cfsqvQAAAAAAAAAAzR3oPU4UdT/T2G69HR+MvjfOsz3DbOK9AAAAAAAAAACasVc7AUGOPZBdoT0xAh2+r5f+PB3fYT0AAAAAAAAAAGZGVbx7Zqa6Rot3tkBNaLEmUVE6q8yTNQAAgD8AAIA/AMAGOn6A1D4WBII8RA1Jvrsnp7xrimC9AAAAAAAAAAAz2aA9TFOfP4YppD6KN7G+oZvzPYLRQz4AAAAAAAAAAAAwu7pIhZu63qnDOgRWkTWjiAq72PHhuQAAgD8AAIA/xgM+vmQNOz/oDtw9U098vu5r+rybX5E9AAAAAAAAAACzOwo+qjmWP/e+LT0PkXm+Uw9KPjF6x7wAAAAAAAAAAI27Ob4jRz0/zlxKPcbDnb4C5q+9DV6NPQAAAAAAAAAAwBIpvswXkT6RsUE+ls9/vus1RTy+of+8AAAAAAAAAACzSiy9Y7BEPfhxVDs1voG+hFIYvY+zir0AAAAAAAAAACZdub1CElY+SJCXPZ7hab7tQEc8wu9MPQAAAAAAAAAAmAySvjGKXD/yIHW9aVyQvntZQL5JIyc8AAAAAAAAAACaue870j/Gu646L7wRwyc8yrURPUAJEr0AAIA/AACAP5pvHL1cUQ+8+r49PUa5jb3sZlI9C/utPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH6PTkQwsaMAWyUTWIBjAF0lEdAl3ndP557gXV9lChoBkdAb6qQLeANG2gHTXIBaAhHQJeK1PSDyvt1fZQoaAZHQHCtR+WnjyZoB00nAWgIR0CXi998JD3NdX2UKGgGR0BxLR/jKgZkaAdNXwFoCEdAl4yWPcSGrXV9lChoBkdAcCPQN0/4ZmgHTVoBaAhHQJeNPSeAd4p1fZQoaAZHQGx0zMRpUPxoB01HAWgIR0CXjem2LHdXdX2UKGgGR0BwiJr9ETg3aAdNMwFoCEdAl47zz3AVPHV9lChoBkdAbk50Eovzv2gHTU8BaAhHQJeQI4VARkF1fZQoaAZHQHAr66z3RHBoB01bAWgIR0CXkWPn0TURdX2UKGgGR0BwOE+EAYHgaAdNVgFoCEdAl5ILhisnzHV9lChoBkdAcQmTrVvuPWgHTVkBaAhHQJeTGTKT0QN1fZQoaAZHQHG/60pmVZ9oB01rAWgIR0CXk0ZtvXK9dX2UKGgGR0BxC/PPcBU8aAdNMAFoCEdAl5Oo1k1/D3V9lChoBkdAazCJUHY6GWgHTUQBaAhHQJeTva9K28Z1fZQoaAZHQHA1rs0HhS9oB01MAWgIR0CXlKoPCl7/dX2UKGgGR0BvKib6P8yfaAdNPQFoCEdAl5TC6MBIWnV9lChoBkdAbuMAPNFBp2gHTTYBaAhHQJeVq+xnnMd1fZQoaAZHQGysEHD7655oB00yAWgIR0CXlyhOgxrSdX2UKGgGR0BxwUHiWE9MaAdNWQFoCEdAl5e9aY/mknV9lChoBkdAb3gi2UjcEmgHTTQBaAhHQJeXxtxdY4h1fZQoaAZHQG7EH62v0RRoB00XA2gIR0CXl/ND+irUdX2UKGgGR0BtQNZs9B8haAdNOgFoCEdAl5h5qM3qA3V9lChoBkdAcef5uqFRHmgHTSQBaAhHQJeZuEpRXOp1fZQoaAZHQG6S7Hp8neBoB01XAWgIR0CXmlISlFc6dX2UKGgGR0BwVTSH/LkkaAdNSwFoCEdAl5yxbOeJ53V9lChoBkdAcaDGPgeijGgHTR0BaAhHQJedlH+ZPVN1fZQoaAZHQHHevfCQ9zRoB00kAWgIR0CXngPIn0CjdX2UKGgGR0BwsImG/N7jaAdNeAFoCEdAl5/6cNH6M3V9lChoBkdAb9mBjnV5KWgHTVwBaAhHQJegGHzpX6t1fZQoaAZHQHEo+G0u14RoB01gAWgIR0CXoIiaiKzidX2UKGgGR0BxQNPl+3H8aAdNOwFoCEdAl6DBwAEMb3V9lChoBkdAcKqRPXTVlWgHTU0BaAhHQJehnTw2ETR1fZQoaAZHQGrAYZ2pyZNoB01fAWgIR0CXo8MgEEDAdX2UKGgGR0BvOjBqKxcFaAdNPQFoCEdAl6Rg5R0lq3V9lChoBkdAcFiPvKEFn2gHTTUBaAhHQJemMMqjJuF1fZQoaAZHQHFimDUVi4JoB01OAWgIR0CXpjGy5Zr6dX2UKGgGR0Bw+viZOSGKaAdNSQFoCEdAl6ZLHyVfNXV9lChoBkdAbB5jkMkQgGgHTWwBaAhHQJenlBmf5DZ1fZQoaAZHQHJSi9/SYw9oB00hAWgIR0CXqAYSg5BDdX2UKGgGR0Brir2SMcZMaAdNWgFoCEdAl6n6ArhBJXV9lChoBkdAcTsDr7fpEGgHTTIBaAhHQJerycDr7fp1fZQoaAZHQHLnLFGXokloB01BAWgIR0CXrYWVu76IdX2UKGgGR0BwEqUA1ejVaAdNSgFoCEdAl65GBz3h43V9lChoBkdAcBufQa72+WgHTS0BaAhHQJeuiPsAvL51fZQoaAZHQHJ29TxXnyNoB00zAWgIR0CXrxxyn1nNdX2UKGgGR0BwDtjz7MxHaAdNUwFoCEdAl6/ndj5KvnV9lChoBkdAcnuCzC1qnGgHTVABaAhHQJewRp9JBgN1fZQoaAZHQHKOciB5HExoB01HAWgIR0CXsLDsMRYjdX2UKGgGR0BwJzI3irDJaAdNNgFoCEdAl7G1PznRs3V9lChoBkdAbXZXMhX8wmgHTVIBaAhHQJfDLHmzSkV1fZQoaAZHQHGsQ9eQdS5oB00+AWgIR0CXw9TQE6kqdX2UKGgGR0BuKVaOgg5jaAdNSAFoCEdAl8QkSqU/wHV9lChoBkdAcrKhUzbeuWgHTSQBaAhHQJfEPxtpEhJ1fZQoaAZHQHAz52IO6NFoB00/AWgIR0CXxMPBzmwJdX2UKGgGR0BxJztPYWcjaAdNZQFoCEdAl8UMcABDHHV9lChoBkdAb7T4NZvDQGgHTTcBaAhHQJfF8/gR9PV1fZQoaAZHQHJowqqfe1toB002AWgIR0CXxutXgccVdX2UKGgGR0ByFe5WilBQaAdNNAFoCEdAl8h7k0aZQnV9lChoBkdAcET7ZWaMJmgHTU8BaAhHQJfIzMC9ytF1fZQoaAZHQG9WAB1cMVloB000AWgIR0CXyUISlFc6dX2UKGgGR0BwjuY0EX+EaAdNRgFoCEdAl8lN7jT8YXV9lChoBkdAcoDVAiV0LmgHTTUBaAhHQJfKTAAQxvh1fZQoaAZHQHKFPRzBAOdoB01rAWgIR0CXy9toSL62dX2UKGgGR0BuhEpsoDxLaAdNHwFoCEdAl8yETlDF63V9lChoBkdAcHcRSxZ+yGgHTVUBaAhHQJfNAlAu7H11fZQoaAZHQHB1ifYjB2xoB013AWgIR0CXzSlpXZGsdX2UKGgGR0BxSgbLlmvoaAdNOgFoCEdAl85UjcEeQ3V9lChoBkdAbQdWCEpRXWgHTTwBaAhHQJfOfQWvbGp1fZQoaAZHQGyT6l+EytVoB00zAWgIR0CXzrw5NoJzdX2UKGgGR0BuS79wWFewaAdNTwFoCEdAl866TOgQH3V9lChoBkdAcQ/xgRbr1WgHTVIBaAhHQJfPyLk0aZR1fZQoaAZHQGrIMPBi1AtoB01SAWgIR0CX0K1hLGrCdX2UKGgGR0ByPaWt2cJ/aAdNQQFoCEdAl9Ebw8W9DnV9lChoBkdAbVY4xUNrkGgHTSQBaAhHQJfRrm9xp+N1fZQoaAZHQHHH53PiT+xoB00tAWgIR0CX0rnr6ciGdX2UKGgGR0Bx0ryH2ys0aAdNRgFoCEdAl9MKC+UQkHV9lChoBkdAcH+L3bmEG2gHTVsBaAhHQJfUSrYGt6p1fZQoaAZHQG1GOuieumtoB01FAWgIR0CX1LuIyj59dX2UKGgGR0BwhUod+5OKaAdNOQFoCEdAl9XXBHkLhXV9lChoBkdAcHmMR6F/QWgHTSsBaAhHQJfWAZVGTcJ1fZQoaAZHQGtoclgMMJBoB00rAWgIR0CX1t8Nx2jgdX2UKGgGR0Bw6bbypaRqaAdNFgFoCEdAl9eALJCBw3V9lChoBkdAbGiokRjBmGgHTU4BaAhHQJfYPSc9W6t1fZQoaAZHQG73XnZCfHxoB006AWgIR0CX2baOxSpBdX2UKGgGR0BsonM2WIGhaAdNNQFoCEdAl9tuokzGgnV9lChoBkdAcNCbW3BpH2gHTW8BaAhHQJfcRvvSc9Z1fZQoaAZHQHIwDt1IRRNoB00oAWgIR0CX3FO3lS0jdX2UKGgGR0BvgszbeuV5aAdNMgFoCEdAl95vjKgZj3V9lChoBkdAbe50jC53DGgHTUcBaAhHQJfefulXRw91fZQoaAZHQG3PKiGnGbVoB02nAWgIR0CX3o15jYqYdX2UKGgGR0Bwx0/SpiqiaAdNNAFoCEdAl+AJ/9YOlXV9lChoBkdAcK8Q/HHWBmgHTT0BaAhHQJfg82ETQE91fZQoaAZHQHCshIe5nUVoB004AWgIR0CX47FERaoudX2UKGgGR0Bww7NliBoVaAdNLwFoCEdAl+VrZi/fwnV9lChoBkdAcXuwCbMHKWgHTSkBaAhHQJfm76fra/R1fZQoaAZHQG6H5uAI6bRoB01LAWgIR0CX5wrpaA4GdX2UKGgGR0Bw8F71Iy0saAdNJAFoCEdAl+eCpeeFtnV9lChoBkdAbw89TP0I1WgHTUUBaAhHQJfnpcJMQEp1fZQoaAZHQG2sqH446wNoB02QAWgIR0CX6IkQf6oEdX2UKGgGR0BwabPZ7HAAaAdNRwFoCEdAl+nKbz9S/HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (179 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 245.60675807618495, "std_reward": 29.041840940061217, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-01T15:01:58.203340"}
|