fats-fme commited on
Commit
150c8d5
1 Parent(s): 309c012

End of training

Browse files
Files changed (2) hide show
  1. README.md +165 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: fxmarty/tiny-llama-fast-tokenizer
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 2282480b-ef3b-4136-8e90-4dd3c99bfab5
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: fxmarty/tiny-llama-fast-tokenizer
22
+ bf16: true
23
+ chat_template: llama3
24
+ dataset_prepared_path: null
25
+ datasets:
26
+ - data_files:
27
+ - 3b22e525b2bdcb03_train_data.json
28
+ ds_type: json
29
+ format: custom
30
+ path: /workspace/input_data/3b22e525b2bdcb03_train_data.json
31
+ type:
32
+ field_input: tools
33
+ field_instruction: query
34
+ field_output: answers
35
+ format: '{instruction} {input}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ ddp_find_unused_parameters: false
40
+ distributed_type: ddp
41
+ early_stopping_patience: null
42
+ env:
43
+ CUDA_VISIBLE_DEVICES: 0,1
44
+ MASTER_ADDR: localhost
45
+ MASTER_PORT: '29500'
46
+ NCCL_DEBUG: INFO
47
+ NCCL_IB_DISABLE: '0'
48
+ NCCL_P2P_DISABLE: '0'
49
+ NCCL_P2P_LEVEL: NVL
50
+ PYTORCH_CUDA_ALLOC_CONF: max_split_size_mb:512, garbage_collection_threshold:0.8
51
+ WORLD_SIZE: '2'
52
+ eval_max_new_tokens: 128
53
+ eval_table_size: null
54
+ evals_per_epoch: 4
55
+ flash_attention: true
56
+ fp16: false
57
+ gradient_accumulation_steps: 4
58
+ gradient_checkpointing: false
59
+ group_by_length: true
60
+ hub_model_id: fats-fme/2282480b-ef3b-4136-8e90-4dd3c99bfab5
61
+ hub_repo: null
62
+ hub_strategy: checkpoint
63
+ hub_token: null
64
+ learning_rate: 0.0002
65
+ load_in_4bit: false
66
+ load_in_8bit: false
67
+ logging_steps: 1
68
+ lora_alpha: 32
69
+ lora_dropout: 0.05
70
+ lora_fan_in_fan_out: null
71
+ lora_model_dir: null
72
+ lora_r: 16
73
+ lora_target_linear: true
74
+ lr_scheduler: cosine
75
+ max_memory_MB: 65000
76
+ max_steps: 10
77
+ micro_batch_size: 2
78
+ mlflow_experiment_name: /tmp/3b22e525b2bdcb03_train_data.json
79
+ model_type: AutoModelForCausalLM
80
+ num_devices: 2
81
+ num_epochs: 1
82
+ optimizer: adamw_torch
83
+ output_dir: miner_id_24
84
+ pad_to_sequence_len: true
85
+ resume_from_checkpoint: null
86
+ s2_attention: null
87
+ sample_packing: false
88
+ saves_per_epoch: 4
89
+ sequence_len: 4056
90
+ special_tokens:
91
+ pad_token: </s>
92
+ strict: false
93
+ tf32: true
94
+ tokenizer_type: AutoTokenizer
95
+ train_on_inputs: false
96
+ trust_remote_code: true
97
+ val_set_size: 0.05
98
+ wandb_entity: null
99
+ wandb_mode: online
100
+ wandb_name: 2282480b-ef3b-4136-8e90-4dd3c99bfab5
101
+ wandb_project: Gradients-On-Demand
102
+ wandb_run: your_name
103
+ wandb_runid: 2282480b-ef3b-4136-8e90-4dd3c99bfab5
104
+ warmup_steps: 20
105
+ world_size: 2
106
+ xformers_attention: true
107
+
108
+ ```
109
+
110
+ </details><br>
111
+
112
+ # 2282480b-ef3b-4136-8e90-4dd3c99bfab5
113
+
114
+ This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset.
115
+ It achieves the following results on the evaluation set:
116
+ - Loss: 10.3855
117
+
118
+ ## Model description
119
+
120
+ More information needed
121
+
122
+ ## Intended uses & limitations
123
+
124
+ More information needed
125
+
126
+ ## Training and evaluation data
127
+
128
+ More information needed
129
+
130
+ ## Training procedure
131
+
132
+ ### Training hyperparameters
133
+
134
+ The following hyperparameters were used during training:
135
+ - learning_rate: 0.0002
136
+ - train_batch_size: 2
137
+ - eval_batch_size: 2
138
+ - seed: 42
139
+ - distributed_type: multi-GPU
140
+ - num_devices: 2
141
+ - gradient_accumulation_steps: 4
142
+ - total_train_batch_size: 16
143
+ - total_eval_batch_size: 4
144
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
145
+ - lr_scheduler_type: cosine
146
+ - lr_scheduler_warmup_steps: 20
147
+ - training_steps: 10
148
+
149
+ ### Training results
150
+
151
+ | Training Loss | Epoch | Step | Validation Loss |
152
+ |:-------------:|:------:|:----:|:---------------:|
153
+ | 10.3873 | 0.0003 | 1 | 10.3866 |
154
+ | 10.3872 | 0.0009 | 3 | 10.3866 |
155
+ | 10.3879 | 0.0017 | 6 | 10.3861 |
156
+ | 10.3829 | 0.0026 | 9 | 10.3855 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - PEFT 0.13.2
162
+ - Transformers 4.46.0
163
+ - Pytorch 2.5.0+cu124
164
+ - Datasets 3.0.1
165
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0da292820b39421b31ba246598d8aacb4d8baa2303a3d28acebe5b9b64c26399
3
+ size 57218