fats-fme commited on
Commit
6f10be1
1 Parent(s): 9a38830

End of training

Browse files
Files changed (2) hide show
  1. README.md +159 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: TinyLlama/TinyLlama_v1.1
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 2b2f0951-7bf1-4be5-b132-0c933188e455
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: TinyLlama/TinyLlama_v1.1
23
+ bf16: true
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 8a3eefb7357ebba8_train_data.json
29
+ ds_type: json
30
+ field: tokenized
31
+ path: /workspace/input_data/8a3eefb7357ebba8_train_data.json
32
+ type: completion
33
+ ddp_find_unused_parameters: false
34
+ distributed_type: ddp
35
+ early_stopping_patience: null
36
+ env:
37
+ CUDA_VISIBLE_DEVICES: 0,1
38
+ MASTER_ADDR: localhost
39
+ MASTER_PORT: '29500'
40
+ NCCL_DEBUG: INFO
41
+ NCCL_IB_DISABLE: '0'
42
+ NCCL_P2P_DISABLE: '0'
43
+ NCCL_P2P_LEVEL: NVL
44
+ PYTORCH_CUDA_ALLOC_CONF: max_split_size_mb:512, garbage_collection_threshold:0.8
45
+ WORLD_SIZE: '2'
46
+ eval_max_new_tokens: 128
47
+ eval_table_size: null
48
+ evals_per_epoch: 4
49
+ flash_attention: true
50
+ fp16: false
51
+ gradient_accumulation_steps: 8
52
+ gradient_checkpointing: false
53
+ group_by_length: true
54
+ hub_model_id: fats-fme/2b2f0951-7bf1-4be5-b132-0c933188e455
55
+ hub_repo: null
56
+ hub_strategy: checkpoint
57
+ hub_token: null
58
+ learning_rate: 0.0002
59
+ load_in_4bit: false
60
+ load_in_8bit: false
61
+ logging_steps: 1
62
+ lora_alpha: 32
63
+ lora_dropout: 0.05
64
+ lora_fan_in_fan_out: null
65
+ lora_model_dir: null
66
+ lora_r: 16
67
+ lora_target_linear: true
68
+ lr_scheduler: cosine
69
+ max_memory_MB: 65000
70
+ max_steps: -1
71
+ micro_batch_size: 2
72
+ mlflow_experiment_name: /tmp/8a3eefb7357ebba8_train_data.json
73
+ model_type: AutoModelForCausalLM
74
+ num_devices: 2
75
+ num_epochs: 1
76
+ optimizer: adamw_torch
77
+ output_dir: miner_id_24
78
+ pad_to_sequence_len: true
79
+ resume_from_checkpoint: null
80
+ s2_attention: null
81
+ sample_packing: false
82
+ saves_per_epoch: 4
83
+ sequence_len: 4056
84
+ special_tokens:
85
+ pad_token: </s>
86
+ strict: false
87
+ tf32: true
88
+ tokenizer_type: AutoTokenizer
89
+ train_on_inputs: false
90
+ trust_remote_code: true
91
+ val_set_size: 0.05
92
+ wandb_entity: null
93
+ wandb_mode: online
94
+ wandb_name: 2b2f0951-7bf1-4be5-b132-0c933188e455
95
+ wandb_project: Gradients-On-Demand
96
+ wandb_run: your_name
97
+ wandb_runid: 2b2f0951-7bf1-4be5-b132-0c933188e455
98
+ warmup_steps: 20
99
+ world_size: 2
100
+ xformers_attention: true
101
+
102
+ ```
103
+
104
+ </details><br>
105
+
106
+ # 2b2f0951-7bf1-4be5-b132-0c933188e455
107
+
108
+ This model is a fine-tuned version of [TinyLlama/TinyLlama_v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) on the None dataset.
109
+ It achieves the following results on the evaluation set:
110
+ - Loss: 2.6247
111
+
112
+ ## Model description
113
+
114
+ More information needed
115
+
116
+ ## Intended uses & limitations
117
+
118
+ More information needed
119
+
120
+ ## Training and evaluation data
121
+
122
+ More information needed
123
+
124
+ ## Training procedure
125
+
126
+ ### Training hyperparameters
127
+
128
+ The following hyperparameters were used during training:
129
+ - learning_rate: 0.0002
130
+ - train_batch_size: 2
131
+ - eval_batch_size: 2
132
+ - seed: 42
133
+ - distributed_type: multi-GPU
134
+ - num_devices: 2
135
+ - gradient_accumulation_steps: 8
136
+ - total_train_batch_size: 32
137
+ - total_eval_batch_size: 4
138
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
139
+ - lr_scheduler_type: cosine
140
+ - lr_scheduler_warmup_steps: 20
141
+ - num_epochs: 1
142
+
143
+ ### Training results
144
+
145
+ | Training Loss | Epoch | Step | Validation Loss |
146
+ |:-------------:|:------:|:----:|:---------------:|
147
+ | 7.1426 | 0.0053 | 1 | 8.9642 |
148
+ | 3.7844 | 0.2512 | 47 | 3.2016 |
149
+ | 1.42 | 0.5023 | 94 | 2.7997 |
150
+ | 1.9046 | 0.7535 | 141 | 2.6247 |
151
+
152
+
153
+ ### Framework versions
154
+
155
+ - PEFT 0.13.2
156
+ - Transformers 4.46.0
157
+ - Pytorch 2.5.0+cu124
158
+ - Datasets 3.0.1
159
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b6b9fb4f81ad5e7f8624326d17f865e1a519c371af42bcb2140a4021e9d792e
3
+ size 50573530