fats-fme commited on
Commit
bad1815
·
verified ·
1 Parent(s): 266f0db

End of training

Browse files
Files changed (2) hide show
  1. README.md +163 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 62e8d22f-0c7c-426d-aa67-4b20b4d9c2ba
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - b99507c826e2be9c_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/b99507c826e2be9c_train_data.json
32
+ type:
33
+ field_input: evidence
34
+ field_instruction: question
35
+ field_output: SQL
36
+ format: '{instruction} {input}'
37
+ no_input_format: '{instruction}'
38
+ system_format: '{system}'
39
+ system_prompt: ''
40
+ ddp_find_unused_parameters: false
41
+ distributed_type: ddp
42
+ early_stopping_patience: null
43
+ env:
44
+ CUDA_VISIBLE_DEVICES: 0,1
45
+ MASTER_ADDR: localhost
46
+ MASTER_PORT: '29500'
47
+ NCCL_DEBUG: INFO
48
+ NCCL_IB_DISABLE: '1'
49
+ NCCL_P2P_DISABLE: '1'
50
+ PYTORCH_CUDA_ALLOC_CONF: expandable_segments:True, max_split_size_mb:512, garbage_collection_threshold:0.8
51
+ WORLD_SIZE: '2'
52
+ eval_max_new_tokens: 128
53
+ eval_table_size: null
54
+ evals_per_epoch: 4
55
+ flash_attention: false
56
+ fp16: null
57
+ gradient_accumulation_steps: 4
58
+ gradient_checkpointing: true
59
+ group_by_length: false
60
+ hub_model_id: fats-fme/62e8d22f-0c7c-426d-aa67-4b20b4d9c2ba
61
+ hub_repo: null
62
+ hub_strategy: checkpoint
63
+ hub_token: null
64
+ learning_rate: 0.0002
65
+ load_in_4bit: false
66
+ load_in_8bit: true
67
+ logging_steps: 1
68
+ lora_alpha: 32
69
+ lora_dropout: 0.05
70
+ lora_fan_in_fan_out: null
71
+ lora_model_dir: null
72
+ lora_r: 16
73
+ lora_target_linear: true
74
+ lr_scheduler: cosine
75
+ max_memory_MB: 35000
76
+ max_steps: 10
77
+ micro_batch_size: 2
78
+ mlflow_experiment_name: /tmp/b99507c826e2be9c_train_data.json
79
+ model_type: AutoModelForCausalLM
80
+ num_devices: 2
81
+ num_epochs: 1
82
+ optimizer: adamw_bnb_8bit
83
+ output_dir: miner_id_24
84
+ pad_to_sequence_len: true
85
+ resume_from_checkpoint: null
86
+ s2_attention: null
87
+ sample_packing: false
88
+ saves_per_epoch: 4
89
+ sequence_len: 4056
90
+ strict: false
91
+ tf32: false
92
+ tokenizer_type: AutoTokenizer
93
+ train_on_inputs: false
94
+ trust_remote_code: true
95
+ val_set_size: 0.05
96
+ wandb_entity: null
97
+ wandb_mode: online
98
+ wandb_name: 62e8d22f-0c7c-426d-aa67-4b20b4d9c2ba
99
+ wandb_project: Gradients-On-Demand
100
+ wandb_run: your_name
101
+ wandb_runid: 62e8d22f-0c7c-426d-aa67-4b20b4d9c2ba
102
+ warmup_steps: 10
103
+ world_size: 2
104
+ xformers_attention: true
105
+
106
+ ```
107
+
108
+ </details><br>
109
+
110
+ # 62e8d22f-0c7c-426d-aa67-4b20b4d9c2ba
111
+
112
+ This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset.
113
+ It achieves the following results on the evaluation set:
114
+ - Loss: nan
115
+
116
+ ## Model description
117
+
118
+ More information needed
119
+
120
+ ## Intended uses & limitations
121
+
122
+ More information needed
123
+
124
+ ## Training and evaluation data
125
+
126
+ More information needed
127
+
128
+ ## Training procedure
129
+
130
+ ### Training hyperparameters
131
+
132
+ The following hyperparameters were used during training:
133
+ - learning_rate: 0.0002
134
+ - train_batch_size: 2
135
+ - eval_batch_size: 2
136
+ - seed: 42
137
+ - distributed_type: multi-GPU
138
+ - num_devices: 2
139
+ - gradient_accumulation_steps: 4
140
+ - total_train_batch_size: 16
141
+ - total_eval_batch_size: 4
142
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
143
+ - lr_scheduler_type: cosine
144
+ - lr_scheduler_warmup_steps: 10
145
+ - training_steps: 10
146
+
147
+ ### Training results
148
+
149
+ | Training Loss | Epoch | Step | Validation Loss |
150
+ |:-------------:|:------:|:----:|:---------------:|
151
+ | 0.0 | 0.0018 | 1 | nan |
152
+ | 0.0 | 0.0055 | 3 | nan |
153
+ | 0.0 | 0.0109 | 6 | nan |
154
+ | 0.0 | 0.0164 | 9 | nan |
155
+
156
+
157
+ ### Framework versions
158
+
159
+ - PEFT 0.13.2
160
+ - Transformers 4.46.0
161
+ - Pytorch 2.5.0+cu124
162
+ - Datasets 3.0.1
163
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:027101f2614b603b75c64bcd311a96b4e669d92fab530b8c6008c1c83b7e5f7d
3
+ size 167934026